Int. J. Simul. Multidisci. Des. Optim.
Volume 13, 2022
Simulation and Optimization for Industry 4.0
Article Number 2
Number of page(s) 11
Published online 06 January 2022
  1. S.S. Sajjadi Jaghargh, A.A. Orouji, An AlGaN/GaN HEMT by a reversed pyramidal channel layer: Investigation and fundamental physics, Int. J. Numer. Modell. 13–18 (2020) [Google Scholar]
  2. T. Mimura, S. Hiyamizu, T. Fujii, K. Nanbu, A new field-effect transistor with selectively doped gaas/n-alxga1-xas heterojunctions, Jpn. J. Appl. Phys. 19, L225 (1980) [CrossRef] [Google Scholar]
  3. S. García, I. Ñiguez-De-La-Torre, J. Mateos, T. González, S. Pérez, Impact of substrate and thermal boundary resistance on the performance of AlGaN/GaN HEMTs analyzed by means of electro-thermal Monte Carlo simulations, Semiconduct. Sci. Technol. 31 (2016) [Google Scholar]
  4. L. Wang, J. Liu, W. Zhou, Z. Xu, Y. Wu, H. Tao, A novel method to dynamic thermal impedance and channel temperature extraction of GaN HEMTs, Int. J. Numer. Modell. 1–9 (2019) [Google Scholar]
  5. D.Y. Jeon, D.K. Kim, S.J. Park, Y. Koh, C.Y. Cho, G.T. Kim, K.H. Park, Effects of series resistance and interface properties on the operation of AlGaN/GaN high electron mobility transistors, Microelectr. Eng. 199, 40–44 (2018) [CrossRef] [Google Scholar]
  6. Y. Dong, Z. Xie, D. Chen, H. Lu, R. Zhang, Y. Zheng, Effects of dissipative substrate on the performances of enhancement mode AlInN/GaN HEMTs, Int. J. Numer. Modell. Electr. Netw. Dev. Fields 32, 1–9 (2019) [Google Scholar]
  7. Y. Chen, Y. Xu, F. Wang, C. Wang, Y. Zhang, B. Yan, R. Xu, Improved quasi-physical zone division model with analytical electrothermal Ids model for AlGaN/GaN heterojunction high electron mobility transistors, Int. J. Numer. Modell. Electr. Netw. Dev. Fields 1–17 (2019) [Google Scholar]
  8. J. Das, H. Oprins, H. Ji, A. Sarua, W. Ruythooren, J. Derluyn, M. Germain, G. Borghs, A temperature analysis of high-power algan/gan hemts, Dans Proceedings of 12th International Workshop on Thermal investigations of ICs (2006) 2–5 [Google Scholar]
  9. Y. Jia, Y. Xu, Y. Guo, A universal scalable thermal resistance model for compact large-signal model of AlGaN/GaN HEMTs, IEEE Trans. Microw. Theory Tech. 66, 4419–4429 (2018) [CrossRef] [Google Scholar]
  10. H. Belmabrouk, B. Chouchen, E.M. Feddi, F. Dujardin, I. Tlili, M. Ben Ayed, M.H. Gazzah, Modeling the simultaneous effects of thermal and polarization in InGaN/GaN based high electron mobility transistors, Optik 163883 (2019) [Google Scholar]
  11. U. Radhakrishna, Physics-Based III-Nitride Device Modeling (Elsevier Inc., 2019), 1st edn. Vol. 102 [Google Scholar]
  12. S. Shamsir, F. Garcia, S.K. Islam, Modeling of enhancement-mode gan-git for high-power and high-temperature application, IEEE Trans. Electr Dev. 67, 588–594 (2020) [CrossRef] [Google Scholar]
  13. Fully coupled thermoelectromechanical analysis of GaN high electron mobility transistor degradation, J. Appl. Phys. 111, 0–16 (2012) [Google Scholar]
  14. J.P. Jones, M.R. Rosenberger, W.P. King, R. Vetury, E. Heller, D. Dorsey, S. Graham, Electro-thermo-mechanical transient modeling of stress development in algan/gan high electron mobility transistors (hemts) (2014) 959–965 [Google Scholar]
  15. M.A. Alim, S. Afrin, A. Rezazadeh, C. Gaquiere, Thermal response and correlation between mobility and kink effect in gan hemts, Microelectr. Eng. (2020) [Google Scholar]
  16. L. Baczkowski, J.-C. Jacquet, O. Jardel, C. Gaquière, M. Moreau, D. Carisetti, L. Brunel, F. Vouzelaud, Temperature measurements in rf operating conditions of algan/gan hemts using ir microscopy and raman spectroscopy (2015) 152–155 [Google Scholar]
  17. N. Hansen, The CMA evolution strategy: a tutorial. Preprint arXiv:1604.00772v1 (2104) [Google Scholar]
  18. A. Makhloufi, Y. Aoues, A. El Hami, B. Radi, P. Pougnet, D. Delaux, Study on the thermomechanical fatigue of electronic power modules for traction applications in electric and hybrid vehicles (IGBT), in: Reliability of High-Power Mechatronic Systems (Elsevier, 2017), pp. 213–251 [CrossRef] [Google Scholar]
  19. R. Aubry, J.-C. Jacquet, J. Weaver, O. Durand, P. Dobson, G. Mills, M.-A. di Forte-Poisson, S. Cassette, S.-L. Delage, Sthm temperature mapping and nonlinear thermal resistance evolution with bias on algan/gan hemt devices, IEEE Trans. Electr. Dev. 54, 385–390 (2007) [CrossRef] [Google Scholar]
  20. A. Amar, B. Radi, A. El Hami, La modélisation thermique de transistor a haute puissance de type HEMT, Incertitudes et fiabilité des systèmes multiphysiques 3, 1–7 (2019) [Google Scholar]
  21. M. Asif Khan, A. Bhattarai, J. Kuznia, D. Olson, High electron mobility transistor based on a gan-al x ga1- x n heterojunction, Appl. Phys. Lett. 63, 1214–1215 (1993) [CrossRef] [Google Scholar]
  22. I. Nifa, C. Leroux, A. Torres, M. Charles, D. Blachier, G. Reimbold, G. Ghibaudo, E. Bano, Characterization of 2DEG in AlGaN/GaN heterostructure by Hall effect, Microelectr. Eng. 178, 128–131 (2017) [CrossRef] [Google Scholar]
  23. D.C. Streit, K.L. Tan, P.-H. Liu, High power pseudomorphic gallium arsenide high electron mobility transistors, uS Patent 5, 262, 660 (Nov. 16 1993) [Google Scholar]
  24. A.A. Wilson, N.R. Jankowski, F. Nouketcha, R. Tompkins, Kapitza resistance at the two-dimensional electron gas interface 766–771 (2019) [Google Scholar]
  25. L. Baczkowski, Modélisation et Caractérisation Thermique de Transistors de Puissance Hyperfréquence GaN et Conséquences sur la Fiabilité de Modules Radars d'Émission/Réception en Bande X, Ph.D. thesis, Université de Lille (2015) [Google Scholar]
  26. R. Aubry, Etude des aspects électrothermiques de la filière hemt algan/gan pour application de puissance hyperfréquence, Ph.D. thesis, Lille 1 (2004) [Google Scholar]
  27. A. El Hami, P. Pougnet, Embedded Mechatronic Systems 2: Analysis of Failures, Modeling, Simulation and Optimization, ISTE éditions, 2015 [Google Scholar]
  28. COMSOL Multiphysics modeling software. URL [Google Scholar]
  29. S. Cheng, P.C. Chou, Novel packaging design for high-power GaN-on-Si high electron mobility transistors (HEMTs), Int. J. Thermal Sci. 66, 63–70 (2013) [CrossRef] [Google Scholar]
  30. O. Jardel, J.-C. Jacquet, L. Baczkowski, D. Carisetti, D. Lancereau, M. Olivier, R. Aubry, M.-A. di Forte Poisson, C. Dua, S. Piotrowicz, S.L. Delage, InAlN/GaN HEMTs based L-band high-power packaged amplifiers, Int. J. Microw. Wireless Technolog. 6, 565–572 (2014) [CrossRef] [Google Scholar]
  31. L.E. Stevens, Thermo-piezo-electro-mechanical simulation of algan (aluminum gallium nitride)/gan (gallium nitride) high electron mobility transistor, Ph.D. thesis (2013) [Google Scholar]
  32. M.A.D. Maur, A.D. Carlo, AlGaN/GaN HEMT degradation: an electro-thermo-mechanical simulation, IEEE Trans. Electr. Dev. 60, 3142–3148 (2013) [CrossRef] [Google Scholar]
  33. T.M. Wagner, A very short introduction to the Finite Element Method (1908) (2004) 1–14. [Google Scholar]
  34. H. Smaoui, L. Zouhri, S. Kaidi, E. Carlier, Combination of fem and cma-es algorithm for transmissivity identification in aquifer systems, Hydrolog. Process. 32, 264–277 (2018) [CrossRef] [Google Scholar]
  35. O. Sigaud, F. Stulp, Adaptation de la matrice de covariance pour l'apprentissage par renforcement direct., Rev. d'intelligence Artif. 27, 243–263 (2013) [CrossRef] [Google Scholar]
  36. H. Hamdani, B. Radi, A. El Hami, Optimization of solder joints in embedded mechatronic systems via Kriging-assisted CMA-ES algorithm, Int. J. Simul. Multidiscipl. Des. Optim. 10, A3 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  37. O.A. Elhara, Stochastic black-box optimization and benchmarking in large dimensions (2017) [Google Scholar]
  38. A. El Hami, R. Bouchaib, Uncertainty and optimization in structural mechanics, Wiley Online Library (2013) [CrossRef] [Google Scholar]
  39. C. Huang, B. Radi, A. El Hami, H. Bai, CMA evolution strategy assisted by kriging model and approximate ranking, Appl. Intell. 48, 4288–4304 (2018) [CrossRef] [Google Scholar]
  40. H. Hamdani, B. Radi, A. El Hami, Metamodel assisted evolution strategies for global optimization of solder joints reliability in embedded mechatronic devices, Microsyst. Technolog. 25, 3801–3812 (2019) [CrossRef] [Google Scholar]
  41. Desjuzeur, Résistance des matériaux, Houille Blanche c 134–137 (1912) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.