Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 13, 2022
Computation Challenges for engineering problems
Article Number 1
Number of page(s) 10
DOI https://doi.org/10.1051/smdo/2021034
Published online 06 January 2022
  1. J. Kim, J. Oh, H. Lee, Review on battery thermal management system for electric vehicles, Appl. Therm. Eng. 149, 192–212 (2019) [Google Scholar]
  2. T. Talluri, T. Hyeong Kim, K.J. Shin, Analysis of a battery pack with a phase change material for the extreme temperature conditions of an electrical vehicle, Energies 13, 507 (2020) [Google Scholar]
  3. Z. Ahmad Qureshi, H. Muhammad Ali, S. Khushnood, Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review, Int. J. Heat Mass Transfer 127, 838–856 (2018) [Google Scholar]
  4. A. Mills, M. Farid, J.R. Selman, S. Al-Hallaj, Thermal conductivity enhancement of phase change materials using a graphite matrix, Appl. Thermal Eng. 26, 1652–1661 (2006) [Google Scholar]
  5. N.I. Ibrahim, F.A. Al-Sulaimana, S. Rahmana, B.S. Yilbasb, A.Z. Sahinb, Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review, Renew. Sustain. Energy Rev. 74, 26–50 (2017) [Google Scholar]
  6. H. Fathabadi, High thermal performance lithium-ion battery pack including hybrid active-passive thermal management system for using in hybrid/electric vehicles, Energy 70, 529–538 (2014) [Google Scholar]
  7. Z. Ling, J. Chen, X. Fang, Z. Zhang, T. Xu, X. Gao, S. Wang, Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system, Appl. Energy 121, 104–113 (2014) [Google Scholar]
  8. Y. Zhao, B. Zou, C. Li, Y. Ding, Active cooling based battery thermal management using composite phase change materials, Energy Proc. 158, 4933–4940 (2019) [Google Scholar]
  9. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renew. Sustain. Energy Rev. 13, 318–345 (2009) [Google Scholar]
  10. Z. Rao, S. Wang, G. Zhang, Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery, Energy Convers. Manag. 52, 3408–3414 (2011) [Google Scholar]
  11. R. Huang, Z. Li, W. Hong, Q. Wu, X. Yu, Experimental and numerical study of PCM thermophysical parameters on lithium-ion battery thermal management, Energy Rep. 6, 8–19 (2020) [Google Scholar]
  12. J. Zhang, X. Li, G. Zhang, Y. Wang, J. Guo, Y. Wang, Q. Huang, C. Xiao, Z. Zhong, Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management, Energy Convers. Manag. 204, 112319 (2020) [Google Scholar]
  13. R. Pradeep, V. Thangavel, Investigations on melting and solidification of a battery cooling system using different phase change materials, Thermal Sci. 25, 220–220 (2020) [Google Scholar]
  14. R.M. Saeeda, J.P. Schlegela, C. Castanoa, R. Sawaftab, V. Kuturub, Preparation and thermal performance of methyl palmitate and lauric acid eutectic mixture as phase change material (PCM), J. Energy Storage 13, 418–424 (2017) [Google Scholar]
  15. X. Zhang, C. Zhu, G. Fang, Preparation and thermal properties of n-eicosane/nano-SiO2/expanded graphite composite phase-change material for thermal energy storage, Mater. Chem. Phys. 240, 122178 (2020) [Google Scholar]
  16. R. Saxena, D. Rakshit, S.C. Kaushik, Experimental assessment of characterised PCMs for thermal management of buildings in tropical composite, Climate DOI: 10.11159/htff18.170 [Google Scholar]
  17. N. Javani, I. Dincer, G.F. Naterer, B.S. Yilbas, Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles, Int. J. Heat Mass Transfer 72, 690–703 (2014) [Google Scholar]
  18. M. Mofijur, T. Meurah Indra Mahlia, A. Susan Silitonga, H. Chyuan Ong, M. Silakhori, M. Heikal Hasan, N. Putra, S.M. Ashrafur Rahman, Phase Change Materials (PCM) for solar energy usages and storage: an overview, Energies 12, 3167 (2019) [Google Scholar]
  19. E. Alehosseini, S.M. Jafari, Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry, Trends Food Sci. Technol. 91, 116–128 (2019) [Google Scholar]
  20. T.Y. Kim, B.-S. Hyun, J.-J. Lee, J. Rhee, Numerical study of the spacecraft thermal control hardware combining solid-liquid phase change material and a heat pipe, Aerospace Sci. Technol. 27, 10–16 (2013) [Google Scholar]
  21. S.S. Madani, M.J. Swierczynski, S.K. Kaer, The discharge behavior of lithium-ion batteries using the Dual-Potential Multi-Scale Multi-Dimensional (MSMD) Battery Model, in 2017 12th Int. Conf. Ecol. Veh. Renew. Energies, EVER, 2017. DOI: 10.1109/EVER.2017.7935915 [Google Scholar]
  22. I. Sarbu, C. Sebarchievici, Chapter 4–Thermal Energy Storage, Solar Heating and Cooling Systems Fundamentals, Experiments and Applications, 2017, 99–138 [Google Scholar]
  23. ANSYS Inc., ANSYS Fluent Theory Guide (Release 2020 R2) (ANSYS Inc.: Canonsburg, PA, USA, 2017) [Google Scholar]
  24. U. Seong Kim, J. Yi, C. Burm Shin, T. Han, S. Park, Modeling the dependence of the discharge behavior of a lithium-ion battery on the environmental temperature, J. Electrochem. Soc. 158, A611–A618 (2011) [Google Scholar]
  25. Y. Liu, Y. Gene Liao, M.-C. Lai, Transient temperature distributions on lithium-ion polymer SLI battery, Vehicles 1, 127–1937 (2019) [Google Scholar]
  26. E. Helmers, P. Marx, Electric cars: technical characteristics and environmental impacts, Helmers and Marx Environmental Sciences Europe 24, 14 (2012) [Google Scholar]
  27. C. Iclodean, B. Varga, N. Burnete, D. Cimerdean, B. Jurchis, Comparison of different battery types for electric vehicles, IOP Conf. Series: Mater. Sci. Eng. 252, 012058 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.