Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 15, 2024
Modelling and Optimization of Complex Systems with Advanced Computational Techniques
Article Number 16
Number of page(s) 9
DOI https://doi.org/10.1051/smdo/2024013
Published online 10 September 2024
  1. B. Wang, J. Lan, H. Qiao, L. Xie, H. Yang, H. Lin, X. Li, Y. Huang, Porous surface with fusion peptides embedded in strontium titanate nanotubes elevates osteogenic and antibacterial activity of additively manufactured titanium alloy, Colloids Surf. B 113188, 224 (2023) [Google Scholar]
  2. C. Song, L. Liu, Z. Deng, H. Lei, F. Yuan, Y. Yang, Y. Li, Y. Jiakuo, Research progress on the design and performance of porous titanium alloy bone implants, J. Mater. Res. Technol. 23, 2626–2641 (2023) [CrossRef] [Google Scholar]
  3. L. Zhao, X. Pei, L. Jiang, C. Hu, J. Sun, F. Xing, C. Zhou, Y. Fan, X. Zhang, Bionic design and 3D printing of porous titanium alloy scaffolds for bone tissue repair, Compos. Part B: Eng. 162, 154–161 (2019) [CrossRef] [Google Scholar]
  4. I. El Khadiri, M. Zemzami, N.-Q. Nguyen, M. Abouelmajd, N. Hmina, S. Belhouideg, Topology optimization methods for additive manufacturing: a review, Int. J. Simul. Multidiscip. Des. Optim. 14 (2023). doi: 10.1051/smdo/2023015 [Google Scholar]
  5. R. Paz, M.D. Monzón, B. González, E. Pei, G. Winter, F. Ortega, Lightweight parametric optimisation method for cellular structures in additive manufactured parts, Int. J. Simul. Multidiscip. Des. Optim. 7 (2016). doi: 10.1051/smdo/2016009 [Google Scholar]
  6. Y.-W. Cui, L. Wang, L.-C. Zhang, Towards load-bearing biomedical titanium-based alloys: From essential requirements to future developments, Progr. Mater. Sci. 144, 101277 (2024) [CrossRef] [Google Scholar]
  7. W. Abd-Elaziem, M.A. Darwish, A. Hamada, W.M. Daoush, Titanium-based alloys and composites for orthopedic implants applications: a comprehensive review, Mater. Des. 112850 (2024) [Google Scholar]
  8. E. Davoodi, H. Montazerian, A.S. Mirhakimi, M. Zhianmanesh, O. Ibhadode, S.I. Shahabad, R. Esmaeilizadeh, E. Sarikhani, S. Toorandaz, S.A. Sarabi, R. Nasiri, Y. Zhu, J. Kadkhodapour, B. Li, A. Khademhosseini, E. Toyserkani, Additively manufactured metallic biomaterials, Bioactive Mater. 15, 214–249 (2022) [CrossRef] [Google Scholar]
  9. B. Peng, H. Xu, F. Song, P. Wen, Y. Tian, Y. Zheng, Additive manufacturing of porous magnesium alloys for biodegradable orthopedic implants: process, design, and modification, J. Mater. Sci. Technol. 182, 79–110 (2024) [CrossRef] [Google Scholar]
  10. Á. Serrano-Aroca, A. Cano-Vicent, R. Sabater i Serra, M. El-Tanani, A. Aljabali, M.M. Tambuwala, Y.K. Mishra, Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications, Mater. Today Bio. 16, 79–110 (2022) [Google Scholar]
  11. X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y.M. Xie, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review, Biomaterials 83, 127–141 (2016) [CrossRef] [Google Scholar]
  12. S. Guessasma, W. Zhang, J. Zhu, S. Belhabib, H. Nouri, Challenges of additive manufacturing technologies from an optimisation perspective, Int. J. Simul. Multidiscip. Des. Optim. 6 (2016). doi: 10.1051/smdo/2016001 [Google Scholar]
  13. K. Spranger, C. Capelli, G.M. Bosi, S. Schievano, Y. Ventikos, Comparison and calibration of a real-time virtual stenting algorithm using finite element analysis and genetic algorithms, Comput. Methods Appl. Mech. Eng. 293, 462–480 (2015) [CrossRef] [Google Scholar]
  14. S. Tu, N. Morita, T. Fukui, K. Shibanuma, The s-version finite element method for non-linear material problems, Appl. Math. Modell. 126, 287–309 (2024) [CrossRef] [Google Scholar]
  15. P. Mondal, A. Das, A. Wazeer, A. Karmakar, Biomedical porous scaffold fabrication using additive manufacturing technique: porosity, surface roughness and process parameters optimization, Int. J. Lightweight Mater. Manufact. 5, 384–396 (2022) [Google Scholar]
  16. X. Wang, D. Zhang, H. Peng, J. Yang, Y. Li, J. Xu, Optimize the pore size-pore distribution-pore geometry-porosity of 3D-printed porous tantalum to obtain optimal critical bone defect repair capability, Biomater. Adv. 154, 213638 (2023) [CrossRef] [Google Scholar]
  17. D. Zhao, Y. Huang, Y. Ao, C. Han, Q. Wang, Y. Li, J. Liu, Q. Wei, Z. Zhang, Effect of pore geometry on the fatigue properties and cell affinity of porous titanium scaffolds fabricated by selective laser melting, J. Mech. Behavior Biomed. Mater. 88, 478–487 (2018) [CrossRef] [Google Scholar]
  18. V. Balasubramani, R. Jeganathan, S. Dinesh Kumar, Numerical analysis of porosity effects on mechanical properties for tissue engineering scaffold, Mater. Today: Proc. (2023) [Google Scholar]
  19. A. Gautam, M.A. Callejas, A. Acharyya, S.G. Acharyya, Shape-memory-alloy-based smart knee spacer for total knee arthroplasty: 3D CAD modelling and a computational study, Med. Eng. Phys. 55, 43–51 (2018) [CrossRef] [Google Scholar]
  20. J.-H. Zhu, K.-K. Yang, W.-H. Zhang, Backbone cup − a structure design competition based on topology optimization and 3D printing, Int. J. Simul. Multidiscip. Des. Optim. 7 (2016). doi: 10.1051/smdo/2016004 [Google Scholar]
  21. G. He, P. Liu, Q. Tan, Porous titanium materials with entangled wire structure for load-bearing biomedical applications, J. Mech. Behav. Biomed. Mater. 5, 16–31 (2012) [CrossRef] [Google Scholar]
  22. S. Zou, Y. Mu, B. Pan, G. Li, L. Shao, J. Du, Y. Jin, Mechanical and biological properties of enhanced porous scaffolds based on triply periodic minimal surfaces, Mater. Des. 219, 110803 (2022) [CrossRef] [Google Scholar]
  23. M. Rahatuzzaman, M. Mahmud, S. Rahman, M.E. Hoque, Design, fabrication, and characterization of 3D-printed ABS and PLA scaffolds potentially for tissue engineering, Res. Eng. 21, 101685 (2024) [Google Scholar]
  24. B. Hoddy, N. Ahmed, K. Al-Lamee, N. Bullett, N. Curzen, N.W. Bressloff, Investigating the material modelling of a polymeric bioresorbable scaffold via in-silico and in-vitro testing, J. Mech. Behavior Biomed. Mater. 120, 104557 (2021) [CrossRef] [Google Scholar]
  25. M. Abbaslou, R. Hashemi, E. Etemadi, Novel hybrid 3D-printed auxetic vascular stent based on re-entrant and meta-trichiral unit cells: finite element simulation with experimental verifications, Mater. Today Commun. 35, 105742 (2023) [CrossRef] [Google Scholar]
  26. J.M. Mercado-Colmenero, C. Martin-Doñate, A novel geometric predictive algorithm for assessing compressive elastic modulus in MEX additive processes, based on part nonlinearities and layers stiffness, validated with PETG and PLA materials, Polym. Test. 133, 108389 (2024) [CrossRef] [Google Scholar]
  27. W.T. Nugroho, Y. Dong, A. Pramanik, M. Chithirai Pon Selvan, Z. Zhang, S. Ramakrishna, Additive manufacturing of re-entrant structures: Well-tailored structures, unique properties, modelling approaches and real applications, Add. Manufactur. 78, 103829 (2023) [CrossRef] [Google Scholar]
  28. C. Xu, Z. Liu, X. Chen, Y. Gao, W. Wang, X. Zhuang, H. Zhang, X. Dong, Bone tissue engineering scaffold materials: Fundamentals, advances, and challenges, Chin. Chem. Lett. 35, 109197 (2024) [CrossRef] [Google Scholar]
  29. Y. Ji, H. Zhang, Z. Jiang, D. Liu, Y. Yang, C. Guan, Y. Su, X. Wang, F. Duan, Research on 3D printed titanium alloy scaffold structure induced osteogenesis: mechanics and in vitro testing, Mater. Today Commun. 40 (2024) [Google Scholar]
  30. J. Li, Y. Yang, Z. Sun, K. Peng, K. Liu, P. Xu, J. Li, X. Wei, X. He, Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis, Mater. Today Biol. 24 (2024) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.