Open Access
Issue |
Int. J. Simul. Multidisci. Des. Optim.
Volume 15, 2024
|
|
---|---|---|
Article Number | 15 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/smdo/2024010 | |
Published online | 20 August 2024 |
- M. Dashtdar, M. Dashtdar, Fault location in the distribution network based on phasor measurement units (PMU), Sci. Bull. Electr. Eng. Faculty 19, 38–43 (2019) [Google Scholar]
- A. Saber, PMU-based fault location method for three-terminal transmission lines with an outage of one line branch, Electric Power Syst. Res. 182, 106224 (2020) [CrossRef] [Google Scholar]
- Y.J. Lee, T.C. Lin, C.W. Liu, Multi-terminal nonhomogeneous transmission line fault location utilizing synchronized data, IEEE Trans. Power Delivery, 34, 1030–1038 (2019) [CrossRef] [Google Scholar]
- T.C. Lin, Z. Xum, F.B. Ouedraogo, Y.J. Lee, A new fault location technique for three-terminal transmission grids using unsynchronized sampling, Int. J. Electr. Power Energy Syst. 123, 106229 (2020) [CrossRef] [Google Scholar]
- T.C. Lin, J.Z. Yang, C.S. Yu, C.W. Liu, Development of a transmission network fault location platform based on cloud computing and synchrophasors, IEEE Trans. Power Delivery 35, 84–94 (2019) [Google Scholar]
- H. Mirshekali, R. Dashti, A. Keshavarz, A.J. Torabi, H.R. Shaker, A novel fault location methodology for smart distribution networks, IEEE Trans. Smart Grid 12, 1277–1288 (2020) [Google Scholar]
- B. Mallikarjun, G. Pathirikkat, D. Sinha Roy, J.B.R. Maddikara, A real-time synchronized harmonic phasor measurements-based fault location method for transmission lines, J. Control Autom. Electr. Syst. 30, 1082–1093 (2019) [CrossRef] [Google Scholar]
- Y. Jia, Y. Liu, B. Wang, D. Lu, Y. Lin, Power network fault location with exact distributed parameter line model and sparse estimation, Electric Power Syst. Res. 212, 108137 (2022) [CrossRef] [Google Scholar]
- V.K. Gaur, B.R. Bhalja, Synchrophasor based fault distance estimation method for tapped transmission line. In 2019 International Conference on Smart Grid Synchronized Measurements and Analytics 2019, May (SGSMA), IEEE, pp. 1–5 [Google Scholar]
- M. Azeroual, Y. Boujoudar, K. Bhagat, L. El Iysaouy, A. Aljarbouh, A. Knyazkov, M. Fayaz, Fault location and detection techniques in power distribution systems with distributed generation: Kenitra City (Morocco) as a case study, Electric Power Syst. Res. 209, 108026 (2022) [CrossRef] [Google Scholar]
- M. Jamei, R. Ramakrishna, T. Tesfay, R. Gentz, C. Roberts, A. Scaglione, S. Peisert, Phasor measurement units optimal placement and performance limits for fault localization, IEEE J. Sel. Areas Commun. 38, 180–192 (2019) [Google Scholar]
- M. Dashtdar, A. Hussain, H.Z. Al Garni, A.A. Mas'ud, W. Haider, Fault location in distribution network by solving the optimization problem based on power system status estimation using the PMU, Machines, 11, 109 (2023) [CrossRef] [Google Scholar]
- A. Khan, A.Q. Khan, M. Sarwar, M. Abubakar, N. Iqbal, An accurate fault location algorithm for meshed power networks utilizing hybrid sparse voltage and current measurements, arXiv preprint 2019. arXiv:1906.12113 [Google Scholar]
- H. Manoharan, Y. Teekaraman, R. Kuppusamy, A. Radhakrishnan, Application of solar cells and wireless system for detecting faults in phasor measurement units using non-linear optimization, Energ. Explor. Exploit. 41, 210–223 (2023) [CrossRef] [Google Scholar]
- F.L. Grando, A.E. Lazzaretti, M. Moreto, H.S. Lopes, Fault classification in power distribution systems using pmu data and machine learning. In 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP), 2019, December, IEEE, pp. 1–6 [Google Scholar]
- G. Paramo, A. Bretas, S. Meyn, High-impedance non-linear fault detection via eigenvalue analysis with low pmu sampling rates, 2023. arXiv preprint arXiv:2301.04123 [Google Scholar]
- M.Z.C. Wanik, A. Sanfilippo, N. Singh, A. Jabbar, Z. Cen, PMU analytics for power fault awareness and prediction. In 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), 2019, May, IEEE, pp. 1–8 [Google Scholar]
- K. Likhitha, O.D. Naidu, Setting free fault location for three-terminal hybrid transmission lines connected with conventional and renewable resources, IEEE Access 11, 23839–23856 (2023) [CrossRef] [Google Scholar]
- R. Patekar, P. Yadav, S.R. Tambay, Effect of frequency variation on fault location in transmission line using synchrophasor technology. In 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), 2019, October, IEEE, pp. 70–75 [Google Scholar]
- B.P. Bandi, S.R. Tambay, I. Srivastava, Fault location for large transmission networks using synchronized voltage measurements. In 2020 IEEE First International Conference on Smart Technologies for Power, Energy, and Control (STPEC), 2020, September, IEEE, pp. 1–6 [Google Scholar]
- J. An, L. Yang, Z. Hao, G. Chen, L. Li, Investigation on road underground defect classification and localization based on ground penetrating radar and Swin transformer, Int. J. Simul. Multidiscip. Des. Optim. 15, 7 (2024) [CrossRef] [EDP Sciences] [Google Scholar]
- E.S. Maputi, R. Arora, Design optimization of a three-stage transmission using advanced optimization techniques, Int. J. Simul. Multidiscip. Des. Optim. 10, A8 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
- D.O. Amoateng, R. Yan, M. Mosadeghy, T.K. Saha, Topology detection in power distribution networks: a PMU based deep learning approach, IEEE Trans. Power Syst. 37, 2771−2782 (2022) [CrossRef] [Google Scholar]
- A. Swetapadma, A. Yadav, Comput. Electr. Eng. 69, 41–53 (2021) [Google Scholar]
- K. Liu, T. Kang, X. Ye, M. Bai, Y. Fan, A fault location method of a distribution network based on XGBoost and SVM algorithm, IET Cyber‐Phys. Syst.: Theor. Appl. 6, 254–264 (2021) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.