Issue |
Int. J. Simul. Multidisci. Des. Optim.
Volume 15, 2024
Modelling and Optimization of Complex Systems with Advanced Computational Techniques
|
|
---|---|---|
Article Number | 16 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/smdo/2024013 | |
Published online | 10 September 2024 |
Review
Design, analysis and optimization of porous titanium alloys scaffolds by using additive manufacture
1
Shandong Jianzhu University, School of Materials Science and Engineering, Jinan 250101, China
2
Jinan Engineering Polytechnic, Jinan 250200, China
3
Shandong Science and Technology Service Development Promotion Centre, Jinan 250101, China
4
Shandong Wenling precision forging Technology Co., LTD, Jinan, 271100 Shandong, China
5
Weifang Fuyuan Supercharger Co., LTD, Weifang, 261206 Shandong, China
* e-mails: sdjz6273@163.com; xsb@sdjzu.edu.cn
Received:
18
April
2024
Accepted:
25
July
2024
In order to have a stronger bond with the surrounding bone, the bone prosthesis needs to have interconnecting pores for bone cells to grow and more importantly to avoid stress shielding. At the same time, human bones have different composition and structure of bone tissue in different parts of the body due to different physical factors of the person, so the elastic modulus of the bones that need to be supported and replaced are not the same. And additive manufacturing has the advantages of rapid, efficient and precise manufacturing of complex shapes and high-quality three-dimensional structures, which can manufacture porous scaffold bone prosthesis, and achieve more accurate mechanical property requirements by controlling the design parameters. To study the effect of design strut length and design strut cross-section diameter size on the elastic modulus of tetrahedral titanium alloy scaffold unit, and with the help of UG NX, several digital models of porous titanium alloy scaffolds were constructed with the strut length and the strut cross-section diameter size as the parameters of variation, and then the elastic modulus of each porous titanium alloy scaffold was measured by ANSYS Workbench 2022, and the elasticity modulus of each porous titanium alloy scaffold was further derived from the relationship between the strut length and strut cross-section diameter size and the porous titanium alloy scaffold. Then the elastic modulus of each porous titanium alloy bracket was measured by ANSYS Workbench 2022, and the mathematical model between the strut length, strut cross-section size and elastic modulus of the porous titanium alloy bracket was further derived. Then, ANSYS Workbench 2022 was used to measure the elastic modulus of each porous titanium alloy bracket and further derive the mathematical model between strut length, strut cross-section diameter size and elastic modulus of the porous titanium alloy bracket, with the help of which the elastic modulus of the porous titanium alloy bracket with specific diameters and strut lengths was finally deduced to validate the correctness of the above predicted mathematical model, and to make reasonable explanations and corrections for the deviations. explanation and correction of deviations. As a result, the rapid prototyping technology can be used to design the required porous titanium alloy bracket in a more detailed way.
Key words: Additive manufacturing / porous titanium alloy holder / modulus of elasticity / numerical calculation
© X. Yang et al., Published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.