Open Access
Issue |
Int. J. Simul. Multidisci. Des. Optim.
Volume 15, 2024
|
|
---|---|---|
Article Number | 17 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/smdo/2024015 | |
Published online | 15 October 2024 |
- Y. Zhang, Q. Hao, G. Cai, J. Lv, C. Yang, Crack damage identification and localisation on metro train bogie frame in IoT using guided waves, IET Intell. Transport Syst. 14, 1403–1409 (2020) [CrossRef] [Google Scholar]
- J. Zhu, W. Cai, Using two sensors for damage detection of bridge based on transfer entropy of vehicle-bridge information, J. Build. Technol. 3, 29–42 (2022) [CrossRef] [Google Scholar]
- G. Zhang, C. Wan, L. Xie, S. Xue, Structural damage identification with output-only measurements using modified Jaya algorithm and Tikhonov regularization method, Smart Struct. Syst. 31, 229–245 2023 [Google Scholar]
- V.H.L. Tirumani, M. Tenneti, K.C. Srikavya, S.K. Kotamraju, Image resolution and contrast enhancement with optimal brightness compensation using wavelet transforms and particle swarm optimization. IET Image Process. 15, 2833–2840 (2021) [CrossRef] [Google Scholar]
- J. Lei, Y. Cui, W. Shi, Structural damage identification method based on vibration statistical indicators and support vector machine, Adv. Struct. Eng. 25, 1310–1322 (2022) [CrossRef] [Google Scholar]
- H. Herranen, J. Majak, P. Tsukrejev, K. Karjust, O. Mrtens, Design and Manufacturing of composite laminates with structural health monitoring capabilities, Proc. CIRP 72, 647–652 (2018) [CrossRef] [Google Scholar]
- Y. Zhang, Q. Hao, G. Cai, J. Lv, C. Yang, Crack damage identification and localisation on metro train bogie frame in IoT using guided waves, IET Intell. Transport Syst. 14, 1403–1409 (2020) [CrossRef] [Google Scholar]
- J. Zhu, W. Cai, Using two sensors for damage detection of bridge based on transfer entropy of vehicle-bridge information, J. Build. Technol. 3, 29–42 (2022) [CrossRef] [Google Scholar]
- Y. Ai, Y. Zhang, H. Cui, W. Zhang, Characterization, identification and life prediction of acoustic emission signals of tensile damage for HSR gearbox housing material, Railway Sci. 2, 225–242 (2023) [CrossRef] [Google Scholar]
- G. Zhang, C. Wan, L. Xie, S. Xue, Structural damage identification with output-only measurements using modified Jaya algorithm and Tikhonov regularization method, Smart Struct. Syst. 31, 229–245 (2023) [Google Scholar]
- J. Lei, Y. Cui, W. Shi, Structural damage identification method based on vibration statistical indicators and support vector machine, Adv. Struct. Eng. 25, 1310–1322 (2022) [CrossRef] [Google Scholar]
- X.Y. Li, S.J. Lin, S.S. Law, Y.Z. Lin, J.F. Lin, Fusion of structural damage identification results from different test scenarios and evaluation indices in structural health monitoring, Struct. Health Monitor. 20, 2540–2565 (2021) [CrossRef] [Google Scholar]
- M. Ramezani, O. Bahar, Structural damage identification for elements and connections using an improved genetic algorithm, Smart Struct. Syst. 28, 643–660 (2021) [Google Scholar]
- X. Wang, X. Zhang, M.M. Shahzad, A novel structural damage identification scheme based on deep learning framework. Structures 29, 1537–1549 (2021) [CrossRef] [Google Scholar]
- S. Veerasingam, M. Ranjani, R. Venkatachalapathy, A. Bagaev, V. Mukhanov, D. Litvinyuk, P. Vethamony, Contributions of Fourier transform infrared spectroscopy in microplastic pollution research: a review, Crit. Rev. Environ. Sci. Technol. 51, 2681–2743 (2021) [CrossRef] [Google Scholar]
- K. Skrai, J. Petrovi, P. Pale, Classification of low- and high-entropy file fragments using randomness measures and discrete Fourier transform coefficients, Vietnam J. Comput. Sci. 10, 433–462 (2023) [CrossRef] [Google Scholar]
- R.M. Zhang, X. Xu, D.G. Truhlar, Observing intramolecular vibrational energy redistribution via the short-time Fourier transform, J. Phys. Chem. A 126, 3006–3014 (2022) [CrossRef] [Google Scholar]
- M. Grobbelaar, S. Phadikar, E. Ghaderpour, A.F. Struck, N. Sinha, R. Ghosh, M.Z.I. Ahmed, A survey on denoising techniques of electroencephalogram signals using wavelet transform, Signals 3, 577–586 (2022) [CrossRef] [Google Scholar]
- L.P.A. Arts, E.L.V.D. Broek, The fast continuous wavelet transformation (fCWT) for real-time, high-quality, noise-resistant time-frequency analysis, Nat. Comput. Sci. 2, 47–58 (2022) [CrossRef] [Google Scholar]
- V. Gupta, Wavelet transform and vector machines as emerging tools for computational medicine, J. Ambient Intell. Human. Comput. 14, 4595–4605 (2023) [CrossRef] [Google Scholar]
- C. Ghosh, A. Verma, P. Verma, Real time fault detection in railway tracks using fast Fourier transformation and discrete wavelet transformation, Int. J. Inf. Technol. 14, 31–40 (2022) [Google Scholar]
- J. Luo, S. Liu, Z. Cai, C. Xiong, G. Tu, A multi-task learning model for non-intrusive load monitoring based on discrete wavelet transform, J. Supercomput. 79, 9021–9046 (2023) [CrossRef] [Google Scholar]
- G.B. Gebremeskel, A critical analysis of the multi-focus image fusion using discrete wavelet transform and computer vision, Soft Comput. 26, 5209–5225 (2022) [CrossRef] [Google Scholar]
- M.H. Daneshvar, M. Saffarian, H. Jahangir, H. Sarmadi, Damage identification of structural systems by modal strain energy and an optimization-based iterative regularization method, Eng. Comput, 39, 2067–2087 (2023) [CrossRef] [Google Scholar]
- D. Bassir, H. Lodge, H. Chang, J. Majak, G. Chen, Application of artificial intelligence and machine learning for BIM, Int. J. Simul. Multidiscip. Des. Optim. 14, 5 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
- H. Mokayed, T.Z. Quan, L. Alkhaled, V. Sivakumar, Real-time human detection and counting system using deep learning computer vision techniques, Artif. Intell. Appl. 1, 221–229 (2023) [Google Scholar]
- N. Vijaya Anand, J. Hema Latha, G. Devadasu, C. Kumar, Generation of optimal switching angle for nine level cascaded H bridge MLI using most valuable player algorithm, Turk. J. Comput. Math. Educ. 12, 1919–1927 (2021) [Google Scholar]
- B.S. Yildiz, N. Pholdee, S. Bureerat, A.R. Yildiz, S.M. Sait, Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems, Eng. Comput. 38, 4207–4219 (2022) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.