Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 13, 2022
Simulation and Optimization for Industry 4.0
Article Number 7
Number of page(s) 19
DOI https://doi.org/10.1051/smdo/2021038
Published online 06 January 2022
  1. H. Hamdani, B. Radi, A. El Hami, Metamodel assisted evolution strategies for global optimization of solder joints reliability in embedded mechatronic devices, Microsyst. Technolog. 25, 3801–3812 (2019) [Google Scholar]
  2. A. Babu Seelam, N. Ahmed Zakir Hussain, S. Hassan Krishanmurthy, Design and analysis of disc brake system in high speed vehicles, Int. J. Simul. Multidisci. Des. Optim. 12, 19 (2021) [Google Scholar]
  3. Y.-H. Pao, A fracture mechanics approach to thermal fatigue life prediction of solder joints, IEEE Trans. Compon. Hybrids Manufactur. Technol. 15, 559–570 (1992) [Google Scholar]
  4. R. Darveaux, K. Banerji, A. Mawer, G. Dody, Reliability of plastic ball grid array assembly (1995) [Google Scholar]
  5. A. Makhloufi, Y. Aoues, A.E. Hami, B. Radi, P. Pougnet, D. Delaux, 10-study on the thermomechanical fatigue of electronic power modules for traction applications in electric and hybrid vehicles (igbt), in Reliability of High-Power Mechatronic Systems 1, edited by A.E. Hami, D. Delaux, H. Grzeskowiak (Elsevier, 2017), pp. 213–251 [Google Scholar]
  6. H. Hamdani, A. El Hami, B. Radi, Reliability analysis of tape based chip-scale packages based metamodel, Microelectr. Reliab. 102, 113445 (2019) [Google Scholar]
  7. B.A. Zahn, Impact of ball via configurations on solder joint reliability in tape-based, chip-scale packages, in Electronic Components and Technology Conference, 2002. Proceedings. 52nd (IEEE, 2002), pp. 1475–1483 [Google Scholar]
  8. S. Jayesh, J. Elias, Finite element modeling and random vibration analysis of bga electronic package soldered using lead free solder alloy − Sn-1Cu-1Ni-1Ag, Int. J. Simul. Multidisci. Des. Optim. 10, A11 (2019) [Google Scholar]
  9. I. Moukhtar, A.Z. El Dein, A.A. Elbaset, Y. Mitani, Introduction and Literature Review, Springer International Publishing, Cham (2021), pp. 1–27 [Google Scholar]
  10. S. Yu, Z. Wang, J. Fan, C. Qian, Z. Deng, D. Gui, High temperature performance evaluation and life prediction for titanium modified silicone used in light-emitting diodes chip scale packages, J. Electr. Packa. 142 (2020) [Google Scholar]
  11. J.A. Depiver, S. Mallik, D. Harmanto, Solder joint failures under thermo-mechanical loading conditions − a review, Adv. Mater. Process. Technolog. 7, 1–26 (2021) [Google Scholar]
  12. H. Hamdani, Metamodels for the reliability study of mechatronic systems. Phd thesis, Normandie University, 2019. https://tel.archives-ouvertes.fr/tel-02923958 [Google Scholar]
  13. M. Jannoun, Y. Aoues, E. Pagnacco, P. Pougnet, A. El-Hami, Probabilistic fatigue damage estimation of embedded electronic solder joints under random vibration, Microelectr. Reliab. 78, 249–257 (2017) [Google Scholar]
  14. R. Darveaux, Effect of simulation methodology on solder joint crack growth correlation, in Electronic Components & Technology Conference, 2000. 2000 Proceedings. 50th (IEEE, 2000), pp. 1048–1058 [Google Scholar]
  15. L. Anand, Constitutive equations for the rate-dependent deformation of metals at elevated temperatures, J. Eng. Mater. Technol. 104, 12–17 (1982) [Google Scholar]
  16. J. Lin, Modeling test responses by multivariable polynomials of higher degrees, SIAM J. Sci. Comput. 28, 832–867 (2006) [Google Scholar]
  17. J. Wu, Z. Luo, Y. Zhang, N. Zhang, An interval uncertain optimization method for vehicle suspensions using chebyshev metamodels, Appl. Math. Modell. 38, 3706–3723 (2014) [Google Scholar]
  18. J. Wu, Z. Luo, J. Zheng, C. Jiang, Incremental modeling of a new high-order polynomial surrogate model, Appl. Math. Modell. 40, 4681–4699 (2016) [Google Scholar]
  19. C. Huang, B. Radi, A. El Hami, H. Bai, Cma evolution strategy assisted by kriging model and approximate ranking, Appl. Intell. 48, 4288–4304 (2018) [Google Scholar]
  20. G. Matheron, Principles of geostatistics, Econ. Geol. 58, 1246–1266 (1963) [Google Scholar]
  21. J. Sacks, W.J. Welch, T.J. Mitchell, H.P. Wynn, Design and analysis of computer experiments, Stat. Sci. 409–423 (1989) [Google Scholar]
  22. C.E. Rasmussen, C.K. Williams, Gaussian Processes for Machine Learning, MIT Press, Cambridge (2006), vol. 1 [Google Scholar]
  23. B. Sudret, Meta-models for structural reliability and uncertainty quantification, arXiv preprint arXiv:1203.2062 (2012) [Google Scholar]
  24. H. Hamdani, B. Radi, A. El Hami, Métamodélisation pour une conception robuste des systèmes mécatroniques, Incertitudes et fiabilité des systèmes multiphysiques 2, 10 (2017) [Google Scholar]
  25. A. Forrester, A. Keane et al., Engineering Design via Surrogate Modelling: A Practical Guide, John Wiley & Sons (2008) [Google Scholar]
  26. C. Huang, B. Radi, A. El Hami, Uncertainty analysis of deep drawing using surrogate model based probabilistic method, Int. J. Adv. Manufactur. Technol. 86, 3229–3240 (2016) [Google Scholar]
  27. C. Ling, Z. Lu, B. Sun, M. Wang, An effcient method combining active learning kriging and monte carlo simulation for profust failure probability, Fuzzy Sets Syst. 387, 89–107 (2020) [Google Scholar]
  28. M.K. Thompson, J.M. Thompson, ANSYS mechanical APDL for finite element analysis, Butterworth-Heinemann (2017) [Google Scholar]
  29. R.C. Team, R: A language and environment for statistical computing. r foundation for statistical computing, Vienna, Austria, 2013 (2014) [Google Scholar]
  30. B.A. Zahn, Comprehensive solder fatigue and thermal characterization of a silicon based multi-chip module package utilizing finite element analysis methodologies, in Proceedings of the 9th International ANSYS Conference and Exhibition (2000), pp. 1–15 [Google Scholar]
  31. J. Standard, Jesd22-a104-b, Temperature Cycling, July, 2000 [Google Scholar]
  32. A. Makhloufi, Y. Aoues, A. El Hami, Reliability based design optimization of wire bonding in power microelectronic devices, Microsyst. Technolog. 22, 2737–2748 (2016) [Google Scholar]
  33. A.A. Giunta, S.F. Wojtkiewicz, M.S. Eldred et al., Overview of modern design of experiments methods for computational simulations, in Proceedings of the 41st AIAA aerospace sciences meeting and exhibit, AIAA-2003-0649 (2003) [Google Scholar]
  34. A. Dean, M. Morris, J. Stufken, D. Bingham, Handbook of design and analysis of experiments, CRC Press (2015), Vol. 7 [Google Scholar]
  35. A. Ben Abdessalem, A. El-Hami, Global sensitivity analysis and multi-objective optimisation of loading path in tube hydroforming process based on metamodelling techniques, Int. J. Adv. Manufactur. Technol. 71, 753–773 (2014) [Google Scholar]
  36. D. Dupuy, C. Helbert, J. Franco et al., Dicedesign and diceeval: Two r packages for design and analysis of computer experiments, J. Stat. Softw. 65, 1–38 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.