Issue |
Int. J. Simul. Multidisci. Des. Optim.
Volume 10, 2019
|
|
---|---|---|
Article Number | A11 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/smdo/2019013 | |
Published online | 01 July 2019 |
Research Article
Finite element modeling and random vibration analysis of BGA electronic package soldered using lead free solder alloy − Sn-1Cu-1Ni-1Ag
Department of Mechanical Engineering, School of Engineering, Cochin University of Science and Technology, Kerala 682022, India
* e-mail: jayesh.jhe@gmail.com
Received:
17
May
2019
Accepted:
13
June
2019
As a result of the ban of lead from solder joints, many lead-free solder joints were developed. Most of the electronic equipment is subjected to random vibration. This study develops an analysis methodology based on finite element analysis and vibration tests to predict the failure and fatigue life of the electronic package soldered using Sn-1Cu-1Ni-1Ag under random vibration. A specially designed printed circuit board having ball grid array packages soldered is used in the study. Finite element model is developed in ANSYS and modal analysis was done. The finite element results were validated with experiments (impact test). Random vibration analysis was also done. These results were validated with random vibration experiments. Using the finite element results, it was predicted that the corner solder joints will fail first. It was observed in the random vibration experiment that corner solder joint failed first and the maximum stress generated was 12.8 MPa. Thus, Sn-1Cu-1Ni-1Ag is a promising lead-free solder joint alloy under random vibration combining with its mechanical properties.
Key words: Random vibration / modal analysis / lead free / solder alloy / finite element analysis / simulation
© S. Jayesh and J. Elias, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.