Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 13, 2022
Article Number 4
Number of page(s) 6
Published online 06 January 2022
  1. D. Bassir, F.-X. Irisarri, J.-F. Maire, N. Carrere, Incorporating industrial constraints for multiobjective optimization of composite laminates using a GA, Int. J. Simul. Multidisci. Des. Optim. 2, 101–106 (2008) [CrossRef] [EDP Sciences] [Google Scholar]
  2. K. Deb, Current trends in evolutionary multi-objective optimization, Int. J. Simul. Multidisci. Des. Optim. 1, 1–8 (2007) [CrossRef] [EDP Sciences] [Google Scholar]
  3. R. El Maani, S. Elouardi, B. Radi, A. El Hami, Multiobjective aerodynamic shape optimization of NACA0012 airfoil based mesh morphing, Int. J. Simul. Multidisci. Des. Optim. 11, 1–10 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  4. A. Tchvagha Zeine, N. El hami, S. Ouhimmou, R. Ellaia, A. Elhami, Multiobjective optimization of trusses using Backtracking Search Algorithm, Incertitudes et fiabilité des systèmes multiphysiques 1, 1–10 (2017) [Google Scholar]
  5. M. Duran Toksari, A heuristic approach to find the global optimum of function, J. Comput. Appl. Math. 209, 160–166 (2007) [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Ehrgott, X. Gandibleux, Multiobjective combinatorial optimization–theory, methodology and applications, in Multiple Criteria Optimization–State of the Art Annotated Bibliographic Surveys, edited by M. Ehrgott and X. Gandibleux. sInternational Series in Operations Research and Management Science (Springer, Boston, MA, 2003), vol 52, pp. 369–444 [Google Scholar]
  7. V. Chankong, Y.Y. Haimes, Multiobjective Decision Making Theory and Methodology (North-Holland, New York, 1983) [Google Scholar]
  8. K. Miettinen, Nonlinear Multiobjective Optimization ( Kluwer, Boston, 1999) [Google Scholar]
  9. D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley Pub. Co., 1989) [Google Scholar]
  10. C.R. Houck, J. Joines, M. Kay, A genetic algorithm for function optimization: A matlab implementation, Technical Report NCSU-IE-TR-95-09, North Carolina State University, Raleigh, NC, 1995 [Google Scholar]
  11. R.E. de Castro, A Genetic Algorithm for Multiobjective Structural Optimization”, IV Simposio Mineiro de Mecanica Computacional (2000) 219–226 [Google Scholar]
  12. I.G. Tsoulos, Modifications of real code genetic algorithm for global optimization, Appl. Math. Comput. 203, 598–607 (2008) [Google Scholar]
  13. I. Das, J.E. Dennis, Normal boundary intersection, a new methode for generating the pareto surface in nonlinear multicreteria optimization problems, SIAM J. Optim. 3, 631–657 (1998) [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Aboulaich, R. Ellaia, S. El Moumen, The mean-variance-CVaR model for portfolio optimization Modeling using a Multi-Objective Approach based on a hybrid method, Math. Model. Nat. Phenom. 7, 93–98 (2010) [Google Scholar]
  15. S. El Moumen, R. Ellaia, R. Aboulaich, A new hybrid method for solving global optimization problem, Appl. Math. Comput. 218, 3265–3276 (2011) [Google Scholar]
  16. S. Kirpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Science 220, 671–680 (1983) [CrossRef] [MathSciNet] [Google Scholar]
  17. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys. 21, 1087–1091 (1953) [CrossRef] [Google Scholar]
  18. C.R. Reeves, Modern Heuristic Techniques for Combinatorial Problems (John Wiley and Sons, New York, NY, 1993) [Google Scholar]
  19. J.C. Spall, Multivariate stochastic approximation using a simultaneous perturbation gradient approximation, IEEE Trans. Autom. Control 37, 332–341 (1992) [CrossRef] [Google Scholar]
  20. B. Azvine, G.R. Tomlinson, R. Wynne, Use of active constrained-layer damping for controlling resonant vibration, Smart Mater. Struct. 4, 1–6 (1995) [CrossRef] [Google Scholar]
  21. M.J. Lam, D.J. Inman, W.R. Saunders, Variations of hybrid damping, in L.P. Davis (ed.), Smart Structures & Materials 1998: Passive Damping and Isolation, edited by L.P. Davis (SPIE, Bellingham, USA, 1998), Vol. 3327, pp. 32–43 [CrossRef] [Google Scholar]
  22. S. El Moumen, R. Ellaia, R. Aboulaich, New hybrid algorithm for multi-objective structural optimization, in Proceedings of2013 International Conference on Industrial Engineering and Systems Management (IESM), (2013), pp. 1–5 [Google Scholar]
  23. Q. Yuan, Z. He, H. Leng, A hybrid genetic algorithm for a class of global optimization problems with box constraints, Appl. Math. Comput. 197, 924–929 (2008) [MathSciNet] [Google Scholar]
  24. J. Zhang et al., An effective multiagent evolutionary algorithm integrating a novel roulette inversion operator for engineering optimization, Appl. Math. Comput. 211, 392–416 (2009) [MathSciNet] [Google Scholar]
  25. J. Schuurmans, J.A. Rossiter, Robust predictive control using tight sets of predicted states, IEE Proc. Control Theory Appl. 147, 13–18 (2000) [CrossRef] [Google Scholar]
  26. M. Janga Reddy, D. Nagesh Kumar, An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design, Eng. Optim. 39, 49–68 (2007) [Google Scholar]
  27. K. Deb, Optimal design of a welded beam via genetic algorithms, AIAA J. 29, 2013–2015 (1991) [CrossRef] [Google Scholar]
  28. B. Yang, Y. Yeun, W. Ruy, Managing approximation models in multiobjective optimization, Struct Multidiscip Optim. 24, 141–156 (2002) [CrossRef] [Google Scholar]
  29. T. Erfani, S.V. Utyuzhnikov, B. Kolo, A modified directed search domain algorithm for multiobjective engineering and design optimization, Struct. Multidiscip. Optim. 48, 1129–1141 (2013) [CrossRef] [MathSciNet] [Google Scholar]
  30. B. Raphael, I.F.C. Smith, A direct stochastic algorithm for global search, Appl. Math. Comput. 146, 729–758 (2003) [MathSciNet] [Google Scholar]
  31. W. Gong, Z. Cai, L. Zhu, An efficient multiobjective differential evolution algorithm for engineering design, Struct. Multidisc. Optim. 38, 137–157 (2009) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.