Open Access
Review
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 13, 2022
Article Number 5
Number of page(s) 18
DOI https://doi.org/10.1051/smdo/2021039
Published online 06 January 2022
  1. X. Zhou, X. Zhang, Thoughts on the development of bridge technology in China, Engineering 5, 1120–1130 (2019) [CrossRef] [Google Scholar]
  2. C. Albuquerque, A.L.L. Silva, A.M.P.D. Jesus, R. Calçada, An efficient methodology for fatigue damage assessment of bridge details using modal superposition of stress intensity factors, Int. J. Fatigue 81, 61–77 (2015) [CrossRef] [Google Scholar]
  3. K.L. Scrivener, V.M. John, E.M. Gartner, Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry, Cement Concr. Res. 114, 2–26 (2018) [CrossRef] [Google Scholar]
  4. D. Sen, K. Erazo, W. Zhang, S. Nagarajaiah, L. Sun, On the effectiveness of principal component analysis for decoupling structural damage and environmental effects in bridge structures, J. Sound Vib. 457, 280–298 (2019) [CrossRef] [Google Scholar]
  5. K. Manley, T. Rose, Innovation in the road and bridge industry, in 2013 Proceedings of PICMET 2013: Technology Management in the IT-Driven Services (2013), pp. 2468–2474 [Google Scholar]
  6. G. Xu, W. Wang, China's energy consumption in construction and building sectors: an outlook to 2100, Energy 195, 117045 (2020) [CrossRef] [Google Scholar]
  7. C.C. Fu, S. Wang, Computational Analysis and Design of Bridge Structures. CRC Press (2017) [Google Scholar]
  8. B.G. Sumpter, R.K. Vasudevan, T. Potok, S.V. Kalinin, A bridge for accelerating materials by design, Npj Comput. Mater. 1 (October) (2015) [Google Scholar]
  9. B. Briseghella, L. Fenu, C. Lan, E. Mazzarolo, T. Zordan, Application of topological optimization to bridge design, J. Bridge Eng. 18, 790–800 (2013) [CrossRef] [Google Scholar]
  10. A. Elrehim, Z. Mostafa, M.A. Eid, M.G. Sayed, Structural optimization of concrete arch bridges using genetic algorithms, Ain Shams Eng. J. 10, 507–516 (2019) [CrossRef] [Google Scholar]
  11. H. Toutanji, Design equations for concrete columns confined with hybrid composite materials, Adv. Compos. Mater. 10, 127–138 (2001) [CrossRef] [Google Scholar]
  12. R.J. Vanderbei, Structural optimization, Int. Ser. Oper. Res. Manag. Sci. 285, 275–291 (2020) [Google Scholar]
  13. P. Darvishi, S. Shojaee, Size and geometry optimization of truss structures using the combination of DNA computing algorithm and generalized convex approximation method, Int. J. Optim. Civil Eng. 8, 625–656 (2018) [Google Scholar]
  14. L.M. Gil-Martín, E. Hernández-Montes, A. Palomares, M. Pasadas-Fernández, The optimum shape of an arch under non-symmetric loading conditions, Arch. Appl. Mech. 86, 1509–1520 (2016) [CrossRef] [Google Scholar]
  15. M.P. Saka, O. Hasançebi, Z.W. Geem, Metaheuristics in structural optimization and discussions on harmony search algorithm, Swarm Evol. Comput. 28, 88–97 (2016) [CrossRef] [Google Scholar]
  16. J.A. Hernández Mejía, O. Schütze, O. Cuate, A. Lara, K. Deb, RDS-NSGA-II: a memetic algorithm for reference point based multi-objective optimization, Eng. Optim. 49, 828–845 (2017) [CrossRef] [MathSciNet] [Google Scholar]
  17. N. Arabha, A.F. Daneshjoo, H.R. Ahmadi, Multiple damage detection in complex bridges based on strain energy extracted from single point measurement, Front. Struct. Civil Eng. 14, 722–730 (2020) [CrossRef] [Google Scholar]
  18. F. Chen, Z. Du, M. Yang, F. Gao, W. Dong, D. Zhang, Design and analysis of a three-dimensional bridge-type mechanism based on the stiffness distribution, Precis. Eng. 51, 48–58 (2018) [CrossRef] [Google Scholar]
  19. A. Kaveh, M. Khayatazad, Ray optimization for size and shape optimization of truss structures, Comput. Struct. 117, 82–94 (2013) [CrossRef] [Google Scholar]
  20. V. Yepes, J.V. Martí, T. García-Segura, Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm, Autom. Constr. 49, 123–134 (2015) [CrossRef] [Google Scholar]
  21. N.L. Chau, N.T. Tran, T.P. Dao, A multi-response optimal design of bridge amplification mechanism based on efficient approach of desirability, fuzzy logic, ANFIS and LAPO algorithm, Arab. J. Sci. Eng. 45, 5803–5831 (2020) [CrossRef] [Google Scholar]
  22. A. Martins, M.B. Luís, M.C. Simões, J.H.J.O. Negrão, Optimization of cable-stayed bridges: a literature survey, Adv. Eng. Softw. 149, 102829 (2020) [CrossRef] [Google Scholar]
  23. M. Esade, B. McKelvey, Integrating modernist and postmodernist perspectives on organizations: a complexity science bridge, Acad. Manag. Rev. 35, 415–433 (2010) [Google Scholar]
  24. Z. Xia, A. Li, J. Li, H. Shi, M. Duan, G. Zhou, Model updating of an existing bridge with high-dimensional variables using modified particle swarm optimization and ambient excitation data, Measurement 159, 107754 (2020) [CrossRef] [Google Scholar]
  25. A. Mortazavi, A new fuzzy strategy for size and topology optimization of truss structures, Appl. Soft Comput. J. 93, 106412 (2020) [CrossRef] [Google Scholar]
  26. S. Zheng, W. Tang, B. Li, A new topology optimization framework for stiffness design of beam structures based on the transformable triangular mesh algorithm, Thin-Walled Struct. 154, 106831 (2020) [CrossRef] [Google Scholar]
  27. M. Afzal, Y. Liu, J.C.P. Cheng, V.J.L. Gan, Reinforced concrete structural design optimization: a critical review, J. Clean. Prod. 260, 120623 (2020) [CrossRef] [Google Scholar]
  28. H. Cao, X. Qian, Z. Chen, H. Zhu, Enhanced particle swarm optimization for size and shape optimization of truss structures, Eng. Optim. 49, 1939–1956 (2017) [CrossRef] [MathSciNet] [Google Scholar]
  29. S.F. Rahmatalla, C.C. Swan, A Q4/Q4 continuum structural topology optimization implementation, Struct. Multidiscipl. Optim. 27, 130–135 (2004) [CrossRef] [Google Scholar]
  30. K. Deb, L. Zhu, S. Kulkarni, Multi-scenario, multi-objective optimization using evolutionary algorithms: initial results, in 2015 IEEE Congress on Evolutionary Computation, CEC 2015 − Proceedings, 1877–1884 (2015) [Google Scholar]
  31. H. Guan, Y.J. Chen, Y.C. Loo, Y.M. Xie, G.P. Steven, Bridge topology optimisation with stress, displacement and frequency constraints, Comput. Struct. 81, 131–145 (2003) [CrossRef] [Google Scholar]
  32. J. Chung, K. Lee, Optimal design of rib structures using the topology optimization technique, Proc. Inst. Mech. Eng. C 211, 425–437 (1997) [CrossRef] [Google Scholar]
  33. A.R. Mijar, C.C. Swan, J.S. Arora, I. Kosaka, Continuum topology optimization for concept design of frame bracing systems, J. Struct. Eng. 124, 541–550 (1998) [CrossRef] [Google Scholar]
  34. H. Wei, B. Shirinzadeh, W. Li, L. Clark, J. Pinskier, Y. Wang, Development of piezo-driven compliant bridge mechanisms: general analytical equations and optimization of displacement amplification, Micromachines 8 (2017) [Google Scholar]
  35. R.T. Terms, NRC publications archive (NPArC) archives des publications Du CNRC (NPArC) Optimization of bridge maintenance management using Markovian models, Span (2014) [Google Scholar]
  36. R. Bowerman, B. Hall, P. Calamai, A multi-objective optimization approach to urban school bus routing: formulation and solution method, Transp. Res. Part A 29, 107–123 (1995) [Google Scholar]
  37. G. Washer, R. Connor, M. Nasrollahi, J. Provines, New framework for risk-based inspection of highway bridges, J. Bridge Eng. 21, 04015077 (2016) [CrossRef] [Google Scholar]
  38. D. Castro e Silva Neto, C.O. Cruz, F. Rodrigues, P. Silva, Bibliometric analysis of PPP and PFI literature: overview of 25 years of research, J. Constr. Eng. Manag. 142, 06016002 (2016) [CrossRef] [Google Scholar]
  39. W.S. Ruy, Y.S. Yang, G.H. Kim, Y.S. Yeun, Topology design of truss structures in a multicriteria environment, Comput. −Aided Civil Infrastruct. Eng. 16, 246–258 (2001) [CrossRef] [Google Scholar]
  40. S. Sabatino, D.M. Frangopol, Y. Dong, Sustainability-informed maintenance optimization of highway bridges considering multi-attribute utility and risk attitude, Eng. Struct. 102, 310–321 (2015) [CrossRef] [Google Scholar]
  41. Q.J. Wen, Z.J. Ren, H. Lu, J.F. Wu, The progress and trend of bim research: a bibliometrics-based visualization analysis, Autom. Constr. 124, 103558 (2021) [CrossRef] [Google Scholar]
  42. D.H. Bassir, J.L. Zapico, M.P. González, R. Alonso, Identification of a spatial linear model based on earthquake-induced data and genetic algorithm with parallel selection, Int. J. Simul. Multidiscipl. Des. Optim. 1, 39–48 (2007) [CrossRef] [EDP Sciences] [Google Scholar]
  43. P. Qiao, J.F. Davalos, B. Brown, Systematic analysis and design approach for single-span FRP deck/stringer bridges, Compos. B: Eng. 31, 593–609 (2000) [CrossRef] [Google Scholar]
  44. H.A. Salim, J.F. Davalos, P. Qiao, S.A. Kiger, Analysis and design of fiber reinforced plastic composite deck-and-stringer bridges, Compos. Struct. 38, 295–307 (1997) [CrossRef] [Google Scholar]
  45. J. Du, N. Olhoff, Topological optimization of continuum structures with design-dependent surface loading − Part I: new computational approach for 2D problems, Struct. Multidiscipl. Optim. 27, 151–165 (2004) [CrossRef] [Google Scholar]
  46. R. Mark, A.S. Cakmak, K. Hill, R. Davidson, Transactions on the Built Environment (WIT Press, 1993), Vol 3 [Google Scholar]
  47. A. Csébfalvi, Combined shape and size optimization of steel bridges, Des. Fabric. Econ. Welded Struct. 53–60 (2008) [CrossRef] [Google Scholar]
  48. S. Zhang, H. Li, Y. Huang, An improved multi-objective topology optimization model based on SIMP method for continuum structures including self-weight, Struct. Multidiscipl. Optim. 63, 211–230 (2021) [CrossRef] [Google Scholar]
  49. L.M.C. Simes, H.O, Negrxo, Pergamon OM-7949(94)EOO44-3 sizing and geometry optimization of cable-stayed bridges, Comput. Sfru. 52, 3–32 (1994) [Google Scholar]
  50. L.F.F. Miguel, L. Fleck, F. Miguel, Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms, Exp. Syst. Appl. 39, 9458–9467 (2012) [CrossRef] [Google Scholar]
  51. W. Lingyun, Z. Mei, W. Guangming, M. Guang, Truss optimization on shape and sizing with frequency constraints based on genetic algorithm, Comput. Mech. 35, 361–368 (2005) [CrossRef] [Google Scholar]
  52. P.C. Fourie, A.A. Groenwold, The particle swarm optimization algorithm in size and shape optimization, Struct. Multidiscipl. Optim. 23, 259–267 (2002) [CrossRef] [Google Scholar]
  53. O. Skoglund, J. Leander, R. Karoumi, Optimizing the steel girders in a high strength steel composite bridge, Eng. Struct. 221, 110981 (2020) [CrossRef] [Google Scholar]
  54. S.O. Degertekin, L. Lamberti, I.B. Ugur, Discrete sizing/layout/topology optimization of truss structures with an advanced jaya algorithm, Appl. Soft Comput. J. 79, 363–390 (2019) [CrossRef] [Google Scholar]
  55. N. Ranaivomiarana, F.X. Irisarri, D. Bettebghor, B. Desmorat, Concurrent optimization of material spatial distribution and material anisotropy repartition for two-dimensional structures, Contin. Mech. Thermodyn. 31, 133–146 (2019) [CrossRef] [MathSciNet] [Google Scholar]
  56. E. Design, R. Prototyping, Design Optimization What Is Design Optimization? (2005) [Google Scholar]
  57. S. Sotiropoulos, G. Kazakis, N.D. Lagaros, High performance topology optimization computing platform, Proc. Manufactur. 44, 441–448 (2020) [CrossRef] [Google Scholar]
  58. R. Heywood, W. Roberts, G. Boully, Dynamic loading of bridges, Transp. Res. Record 1770, 58–66 (2001) [CrossRef] [Google Scholar]
  59. R. Tokerud, Precast prestressed concrete bridges for low-volume roads, PCI J. 24, 42–56 (1979) [CrossRef] [Google Scholar]
  60. Y.L. Zheng, T.P. Zhang, B. Fang, Y.Y. Tang, Discriminant isomap projection, in 2009 International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR 2009 20, 144–147 (2009) [CrossRef] [Google Scholar]
  61. J. Hammervold, M. Reenaas, H. Brattebø, Environmental life cycle assessment of bridges, J. Bridge Eng. 18, 153–161 (2013) [CrossRef] [Google Scholar]
  62. M. Liu, D.M. Frangopol, Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost, J. Struct. Eng. 131, 833–842 (2005) [CrossRef] [Google Scholar]
  63. M.D. Thompson, C.D. Eamon, M. Rais-Rohani, Reliability-based optimization of fiber-reinforced polymer composite bridge deck panels, J. Struct. Eng. 132, 1898–1906 (2006) [CrossRef] [Google Scholar]
  64. A.O. Thippeswamy, Analysis of load optimization in cable stayed bridge using CSI bridge software, Int. J. Appl. Eng. Res. 13, 78–80 (2018) [Google Scholar]
  65. Z. Wang, N. Zhang, X. Du, S. Wang, Q. Sun, Multiobjective optimization of cable forces and counterweights for universal cable-stayed Bridges, J. Adv. Transp. 2021 (2021) [Google Scholar]
  66. Y. Dong, D.M. Frangopol, D. Saydam, Pre-earthquake multi-objective probabilistic retrofit optimization of bridge networks based on sustainability, J. Bridge Eng. 19, 04014018 (2014) [CrossRef] [Google Scholar]
  67. G.R. Zavala, A.J. Nebro, F. Luna, C.A.C. Coello, A survey of multi-objective metaheuristics applied to structural optimization, Struct. Multidiscipl. Optim. 49, 537–558 (2014) [CrossRef] [Google Scholar]
  68. K. Suresh, A 199-line matlab code for pareto-optimal tracing in topology optimization, Struct. Multidiscipl. Optim. 42, 665–679 (2010) [CrossRef] [Google Scholar]
  69. P. Bocchini, D.M. Frangopol, Optimal resilience- and cost-based postdisaster intervention prioritization for bridges along a highway segment, J. Bridge Eng. 17, 117–129 (2012) [CrossRef] [Google Scholar]
  70. U.M. Diwekar, Nonlinear programming, Springer Optim. Appl. 22, 55–94 (2020) [Google Scholar]
  71. P. Wu, L. Gao, D. Zou, S. Li, An improved particle swarm optimization algorithm for reliability problems, ISA Trans. 50, 71–81 (2011) [CrossRef] [Google Scholar]
  72. M. Aldwaik, H. Adeli, Advances in optimization of highrise building structures, Struct. Multidiscipl. Optim. 50, 899–919 (2014) [CrossRef] [Google Scholar]
  73. F. Edition, 04 − Rao S S − Engineering Optimization − Theory and Practice-Wiley (2009). Pdf (2009) [Google Scholar]
  74. Z.H. Han, S. Görtz, R. Zimmermann, Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function, Aerosp. Sci. Technol. 25, 177–189 (2013) [CrossRef] [Google Scholar]
  75. Y.-H. Huang, Artificial neural network model of bridge deterioration, J. Perform. Construc. Facil. 24, 597–602 (2010) [CrossRef] [Google Scholar]
  76. S.N. Mahmoudi, L. Chouinard, Seismic fragility assessment of highway bridges using support vector machines, Bull. Earthquake Eng. 14, 1571–1587 (2016) [CrossRef] [Google Scholar]
  77. S.H. Huang, Y.H. Huang, C.A. Blazquez, G. Paredes-Belmar, Application of the ant colony optimization in the resolution of the bridge inspection routing problem, Appl. Soft Comput. J. 65, 443–461 (2018) [CrossRef] [Google Scholar]
  78. A. Fox, E. Chew, M. Campbell, E.M. Atkins, H. Hess, Frontiers of Engineering, Front. Eng. (1999) [Google Scholar]
  79. M.A. Mellal, E. Zio, System reliability-redundancy optimization with cold-standby strategy by an enhanced nest cuckoo optimization algorithm, Reliab. Eng. Syst. Saf. 201, 106973 (2020) [CrossRef] [Google Scholar]
  80. J.L. Zapico, D.H Bassir, ESDA2008-59553 (2016) 1–6 [Google Scholar]
  81. H. Ghodsi, M.J. Khanjani, A.A. Beheshti, Evaluation of harmony search optimization to predict local scour depth around complex bridge piers, Civil Eng. J. 4, 402 (2018) [CrossRef] [Google Scholar]
  82. A. Kohansarbaz, A. Kohansarbaz, B. Yaghoubi, M.A. Izadbakhsh, S. Shabanlou, An integration of adaptive neuro-fuzzy inference system and firefly algorithm for scour estimation near bridge piers, Earth Sci. Inf. 14, 1399–1411 (2021) [CrossRef] [Google Scholar]
  83. L.B. Morales, Scheduling a bridge club by tabu search, Math. Mag. 70, 287–290 (1997) [CrossRef] [MathSciNet] [Google Scholar]
  84. M.A. Latif, M.P. Saka, Optimum Design of tied-arch bridges under code requirements using enhanced artificial bee colony algorithm, Adv. Eng. Softw. 135, 102685 (2019) [CrossRef] [Google Scholar]
  85. G. Bekdaş, S.M. Niğdeli, Optimum design of reinforced concrete columns employing teaching-learning based optimization, Chal. J. Struct. Mech. 2, 216–219 (2016) [Google Scholar]
  86. S. Sudha Letha, T. Thakur, J. Kumar, Harmonic elimination of a photo-voltaic based cascaded H-bridge multilevel inverter using PSO (Particle Swarm Optimization) for induction motor drive, Energy 107, 335–346 (2016) [CrossRef] [Google Scholar]
  87. R. Khamooshi, J.S. Moghani, Comprehensive harmonic optimization in cascaded H-bridge multilevel inverters using variable DC sources, in PEDSTC 2014 − 5th Annual International Power Electronics, Drive Systems and Technologies Conference (2014), no. Pedstc: 249–254 [Google Scholar]
  88. A. Kaveh, Applications of Metaheuristic Methods in Civil Engineering Problems (2017), Vol. 1 [Google Scholar]
  89. S. Gholizadeh, Layout optimization of truss structures by hybridizing cellular automata and particle swarm optimization, Comput. Struct. 125, 86–99 (2013) [CrossRef] [Google Scholar]
  90. M. Kociecki, H. Adeli, Two-phase genetic algorithm for topology optimization of free-form steel space-frame roof structures with complex curvatures, Eng. Appl. Artif. Intell. 32, 218–227 (2014) [CrossRef] [Google Scholar]
  91. K. Sörensen, Metaheuristics-the metaphor exposed, Int. Trans. Oper. Res. 22, 3–18 (2015) [CrossRef] [MathSciNet] [Google Scholar]
  92. S. Mahdavi, M. Ebrahim Shiri, S. Rahnamayan, Metaheuristics in large-scale global continues optimization: a survey, Inf. Sci. 295, 407–428 (2015) [CrossRef] [Google Scholar]
  93. M.Y. Cheng, D. Prayogo, Y.W. Wu, M.M. Lukito, A hybrid harmony search algorithm for discrete sizing optimization of truss structure, Autom. Constr. 69, 21–33 (2016) [CrossRef] [Google Scholar]
  94. A. Younes, A. Chateauneuf, Benchmark study of numerical methods for reliability-based design optimization, Struct. Multidiscipl. Optim. 41, 277–294 (2010) [CrossRef] [MathSciNet] [Google Scholar]
  95. Z.Y. Ning, Structural optimization research on girder of 200t bridge crane based on ANSYS, Adv. Mater. Res. 430–432, 1708–1711 (2012) [CrossRef] [Google Scholar]
  96. L. Zhao, W. Zhang, W. Wang, Construction cost prediction based on genetic algorithm and BIM, Int. J. Pattern Recogn. Artif. Intell. 34 (2020) [Google Scholar]
  97. K. Deng, P. Pan, Y. Su, Y. Xue, Shape optimization of U-shaped damper for improving its bi-directional performance under cyclic loading, Eng. Struct. 93, 27–35 (2015) [CrossRef] [Google Scholar]
  98. Y. Arayici, T. Fernando, V. Munoz, M. Bassanino, Interoperability specification development for integrated BIM use in performance based design, Autom. Constr. 85, 167–181 (2018) [CrossRef] [Google Scholar]
  99. D. Chamoret, K. Qiu, M. Domaszewski, Optimization of truss structures by a stochastic method, Int. J. Simul. Multidiscipl. Des. Optim. 3, 321–325 (2009) [CrossRef] [Google Scholar]
  100. P. Sharafi, M.N.S. Hadi, Lip H. Teh, Geometric design optimization for dynamic response problems of continuous reinforced concrete beams, J. Comput. Civil Eng. 28, 202–209 (2014) [CrossRef] [Google Scholar]
  101. S. Kravanja, T. Žula, U. Klanšek, Multi-parametric MINLP optimization study of a composite I beam floor system, Eng. Struct. 130, 316–335 (2017) [CrossRef] [Google Scholar]
  102. S. Kravanja, G. Turkalj, S. Šilih, T. Žula, Optimal design of single-story steel building structures based on parametric MINLP optimization, J. Constr. Steel Res. 81, 86–103 (2013) [CrossRef] [Google Scholar]
  103. M.R. Bussieck, A. Pruessner, Mixed-integer nonlinear programming, Int. Ser. Oper. Res. Manag. Sci. 84, 373–395 (2006) [Google Scholar]
  104. R.T. Marler, J.S. Arora, Survey of multi-objective optimization methods for engineering, Struct. Multidiscipl. Optim. 26, 369–395 (2004) [CrossRef] [Google Scholar]
  105. C.A.C. Coello, G.B. Lamont, D.A.V. Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems. Evolutionary Algorithms for Solving Multi-Objective Problems (2007) [Google Scholar]
  106. L.A. Zadeh, Optimality and non-scalar-valued performance criteria, IEEE Trans. Autom. Control 8, 59–60 (1963) [CrossRef] [Google Scholar]
  107. T.W. Athan, P.Y. Papalambros, A note on weighted criteria methods for compromise solutions in multi-objective optimization, Eng. Optim. 27, 155–176 (1996) [CrossRef] [Google Scholar]
  108. E. Sanaei, M. Babaei, Topology optimization of structures using cellular automata with constant strain triangles, Int. J. Civil Eng. 10, 179–188 (2012) [Google Scholar]
  109. M.P. Saka, Z.W. Geem, Mathematical and metaheuristic applications in design optimization of steel frame structures: an extensive review, Math. Probl. Eng. 2013 (2013) [Google Scholar]
  110. F. Ghodoosi, S. Abu-Samra, M. Zeynalian, T. Zayed, Maintenance cost optimization for bridge structures using system reliability analysis and genetic algorithms, J. Constr. Eng. Manag. 144, 04017116 (2018) [CrossRef] [Google Scholar]
  111. A.N. Morab, R.J. Fernandes, Optimization of box girder bridge using genetic algorithm method, IOSR J. Mech. Civil Eng. 15, 24–29 (2018) [Google Scholar]
  112. H.A. Rani, Optimization and effectiveness of bridge construction development based on value engineering, Int. J. Civil Struct. Environ. Infrastruct. Eng. Res. Dev. 7, 15–22 (2017) [CrossRef] [Google Scholar]
  113. J.O. Almeida, R.M. Delgado, P.F. Teixeira, A bridge life-cycle cost optimization methodology, in Life-Cycle of Engineering Systems: Emphasis on Sustainable Civil Infrastructure − 5th International Symposium on Life-Cycle Engineering, IALCCE 2016 (2017) pp. 1103–1110 [Google Scholar]
  114. T.G. Chitari, T.N. Narkhede, Cost optimization of extradosed bridge by varying cable position, Int. Res. J. Eng. Technol. 1462–1474 (2019) [Google Scholar]
  115. S. Qin, Y.L. Zhou, H. Cao, M.A. Wahab, Model updating in complex bridge structures using kriging model ensemble with genetic algorithm, KSCE J. Civil Eng. 22, 3567–3578 (2018) [CrossRef] [Google Scholar]
  116. R.M. Burkart, J.W. Kolar, Comparative η-ρ-σ pareto optimization of Si and SiC multilevel dual-active-bridge topologies with wide input voltage range, IEEE Trans. Power Electr. 32, 5258–5270 (2017) [CrossRef] [Google Scholar]
  117. A. Rajguru, Effective techniques in cost optimization of construction project: an review, Int. J. Res. Eng. Technol. 04, 464–469 (2015) [Google Scholar]
  118. W. Zhang, N. Wang, Bridge network maintenance prioritization under budget constraint, Struct. Saf. 67, 96–104 (2017) [CrossRef] [Google Scholar]
  119. S. Shuai, Q. Xili, C. Shiyong, X. Yi, O. Huiying, T. Hongbo, H. Xiaoxu, Study on scheme optimization of bridge reinforcement increasing ratio, IOP Conf. Ser. Earth Environ. Sci. 671 (2021) [Google Scholar]
  120. H. Park, Model-based optimization of ultra high performance concrete highway bridge girders 139 (2003) [Google Scholar]
  121. G.H. Eom, S.J. Kim, T.H. Lee, J.H.J. Kim, Design optimization and structural performance evaluation of plate girder bridge constructed using a turn-over process, Materials 10 (2017) [Google Scholar]
  122. D. Bui-Ngoc, T. Bui-Tien, H. Nguyen-Tran, M.A. Wahab, G.D. Roeck, Structural health monitoring using handcrafted features and convolution neural network, Lect. Notes Civil Eng. 110 (2021) [Google Scholar]
  123. V. Penadés-Plà, T. García-Segura, J.V. Martí, V. Yepes, An optimization-LCA of a prestressed concrete precast bridge, Sustainability (Switzerland) 10, 1–17 (2018) [CrossRef] [Google Scholar]
  124. T. García-Segura, V. Penadés-Plà, V. Yepes, Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty, J. Clean. Prod. 202, 904–915 (2018) [CrossRef] [Google Scholar]
  125. Z. Yiyun, J. Jiang, Stability behavior of plate girders with laterally unbraced ends, J. Civil Eng. Architect. 10 (2016) [Google Scholar]
  126. E.K. Chalouhi, Optimal Design Solutions of Concrete Bridges Considering Environmental Impact and Investment Cost (2019) [Google Scholar]
  127. M. Ronagh, Plastic hinge length of RC columns subjected to both far-fault and near-fault ground motions having forward directivity, Struct. Des. Tall Special Build. 24, 421–439 (2011) [Google Scholar]
  128. V. Penadés-Plà, T. García-Segura, V. Yepes, Accelerated optimization method for low-embodied energy concrete box-girder bridge design, Eng. Struct. 179, 556–565 (2019) [CrossRef] [Google Scholar]
  129. J. Bennetts, G.T. Webb, P.J. Vardanega, S.R. Denton, N. Loudon, Using data to explore trends in bridge performance, Proc. Inst. Civil Eng. Smart Infrastruct. Construct. 171, 14–28 (2018) [Google Scholar]
  130. Y. Feng, C. Wang, B. Briseghella, L. Fenu, T. Zordan, Structural optimization of a steel arch bridge with genetic algorithm, Struct. Eng. Int. 1–10 (2020) [Google Scholar]
  131. K. Korus, M. Salamak, M. Jasiński, Optimization of geometric parameters of arch bridges using visual programming FEM components and genetic algorithm, Eng. Struct. 241 (2021) [Google Scholar]
  132. C. Liu, A. Hammad, Y. Itoh, Multiobjective optimization of bridge deck rehabilitation using a genetic algorithm, Comput. Aided Civil Infrastructure Eng. 12, 431–443 (1997) [CrossRef] [Google Scholar]
  133. S. Tong, Z. Tianqi, S. Li, Z. Hao, Optimal design of negative stiffness devices for highway bridges using performance-based genetic algorithm, Front. Phys. 9, 1–8 (2021) [Google Scholar]
  134. A. Yosri, Y. Elleathy, S. Hassini, W. El-Dakhakhni, Genetic algorithm-Markovian model for predictive bridge asset management, J. Bridge Eng. 26, 04021052 (2021) [CrossRef] [Google Scholar]
  135. C.K. Soh, J. Yang, Optimal layout of bridge trusses by genetic algorithms, Comput. Aided Civil Infrastruct. Eng. 13, 247–254 (1998) [CrossRef] [Google Scholar]
  136. C. Solnon, D. Bridge, An ant colony optimization meta-heuristic for subset selection problems, Syst. Eng. Using Particle Swarm Optim. 3–25 (2007) [Google Scholar]
  137. E. Elbeltagi, T. Hegazy, D. Grierson, A modified shuffled frog-leaping optimization algorithm: applications to project management, Struct. Infrastruct. Eng. 3, 53–60 (2007) [CrossRef] [Google Scholar]
  138. D. Zou, L. Gao, S. Li, J. Wu, An effective global harmony search algorithm for reliability problems, Exp. Syst. Appl. 38, 4642–4648 (2011) [CrossRef] [Google Scholar]
  139. R. Ahsan, S. Rana, S. Nurul Ghani, Cost optimum design of posttensioned I-girder bridge using global optimization algorithm, J. Struct. Eng. 138, 273–284 (2012) [CrossRef] [Google Scholar]
  140. W.M. Li, Z.H. Jiang, T.L. Wang, H.P. Zhu, Optimization method based on generalized pattern search algorithm to identify bridge parameters indirectly by a passing vehicle, J. Sound Vibr. 333, 364–380 (2014) [CrossRef] [Google Scholar]
  141. V. Yepes, J.V. Martí, T. García-Segura, Design optimization of precast-prestressed concrete road bridges with steel fiber-reinforcement by a hybrid evolutionary algorithm, Int. J. Comput. Methods Exp. Measur. 5, 179–189 (2017) [Google Scholar]
  142. D. Jolevski, O. Bego, Model predictive control of gantry/bridge crane with anti-sway algorithm, J. Mech. Sci. Technol. 29, 827–834 (2015) [CrossRef] [Google Scholar]
  143. M.D. Phung, C.H. Quach, T.H. Dinh, Q. Ha, Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection, Autom. Constr. 81, 25–33 (2017) [CrossRef] [Google Scholar]
  144. W. Shi, L. Wang, Z. Lu, Q. Zhang, Application of an artificial fish swarm algorithm in an optimum tuned mass damper design for a pedestrian bridge, Appl. Sci. (Switzerland) 8 (2018) [Google Scholar]
  145. J. Guo, W. Yuan, X. Dang, M.S. Alam, Cable force optimization of a curved cable-stayed bridge with combined simulated annealing method and cubic b-spline interpolation curves, Eng. Struct. 201, 109813 (2019) [CrossRef] [Google Scholar]
  146. Z. Xu, M. Huang, Improving bridge expansion and contraction installation replacement decision system using hybrid chaotic whale optimization algorithm, Appl. Sci. (Switzerland) 11 (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.