Int. J. Simul. Multidisci. Des. Optim.
Volume 12, 2021
Computation Challenges for engineering problems
Article Number 12
Number of page(s) 9
Published online 13 August 2021
  1. H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications, Mater. Sci. Eng. C 26, 1269–1277 (2006) [CrossRef] [Google Scholar]
  2. W. Ziaja, Finite element modeling of the fracture behavior of surface treated Ti6Al4V alloy, Arch. Comput. Mater. Sci. Surf. Eng. 1, 53–60 (2009) [Google Scholar]
  3. D.R. Sumner, Long-term implant fixation and stress-shielding in total hip replacement, J. Biomech. 48, 797–800 (2015) [CrossRef] [Google Scholar]
  4. M. Alaña, A. López de Arancibia, A. Pradera-Mallabiabarrena, S. Ruiz de Galarreta, Analytical model of the elastic behavior of a modified face-centered cubic lattice structure, J. Mech. Behav. Biomed. Mater. 98, 357–368 (2019) [CrossRef] [Google Scholar]
  5. S. Wang, L. Liu, L. Kai, L. Zhua, J. Chen, Y. Hao, Pore functionally graded Ti6Al4V scaffolds for bone tissue engineering application, Mater. Des. 168, 107643 (2019) [CrossRef] [Google Scholar]
  6. J. Parthasarathy, B. Starly, S. Raman, A. Christensen, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting, J. Mech. Behav. Biomed. Mater. 3, 249–259 (2010) [CrossRef] [Google Scholar]
  7. K. Hazlehurst, C.J. Wang, M. Stanford, Evaluation of the stiffness characteristics of square pore CoCrMo cellular structures manufactured using laser melting technology for potential orthopedic applications, Mater. Des. 51, 949–955 (2013) [CrossRef] [Google Scholar]
  8. L. Wang, J. Kang, C. Sun, D. Li, Y. Caoa, Z. Jin, Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopedic implants, Mater. Des. 133, 62–68 (2017) [CrossRef] [Google Scholar]
  9. H. Mehboob, F. Tarlochan, A. Mehboob, S.H. Chang, Finite element modeling and characterization of 3D cellular microstructures for the design of cement less biomimetic porous hip stem, Mater. Des. 149, 101–112 (2018) [CrossRef] [Google Scholar]
  10. J.-H. Zhu, K.-K. Yang, W.-H. Zhang, Backbone cup − a structure design competition based on topology optimization and 3D printing, Int. J. Simul. Multisci. Des. Optim. 7, A1 (2016) [CrossRef] [Google Scholar]
  11. R. Paz, M.D. Monzón, B. González, E. Pei, G. Winter, F. Ortega, Lightweight parametric optimisation method for cellular structures in additive manufactured parts, Int. J. Simul. Multisci. Des. Optim. 7, A6 (2016) [CrossRef] [Google Scholar]
  12. L. Mullen, R.C. Stamp, W.K. Brooks, E. Jones, C.J. Sutcliffe, Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in‐growth constructs, suitable for orthopedic applications, J. Biomed. Mater. Res. B 89, 325–334 (2009) [CrossRef] [Google Scholar]
  13. S. Kujala, J. Ryhänen, A. Danilov, J. Tuukkanen, Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute, Biomaterials 24, 4691–4697 (2003) [CrossRef] [Google Scholar]
  14. S. Arabnejad, R.B. Johnston, J.A. Pura, B. Singh, M. Tanzer, D. Pasini, High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints, Acta Biomater. 30, 345–356 (2016) [CrossRef] [Google Scholar]
  15. N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, S. Matsuda, Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment, Mater. Sci. Eng. C 59, 690‒701 (2016) [Google Scholar]
  16. L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties Textbook, Cambridge University Press (1997) [Google Scholar]
  17. X.P. Tan, Y.J. Tan, C.S.L. Chow, S.B. Tor, W.Y. Yeong, Metallic powder-bed based 3D printing of cellular scaffolds for orthopedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility, Mater. Sci. Eng. C 76, 1328–1343 (2017) [Google Scholar]
  18. S. Sogutlu, B. Koc, Stochastic modeling of tissue engineering scaffolds with varying porosity levels, Comput. Aided Des. Appl. 4, 661–670 (2007) [Google Scholar]
  19. O. Cansizoglu, D. Harrysson, O. Cormier, H. West, T. Mahale, Properties of Ti6Al4V non-stochastic lattice structures fabricated via electron beam melting, Mater. Sci. Eng. A 492, 468–474 (2008) [Google Scholar]
  20. S.M. Ahmadi, G. Campoli, S. Amin Yavari, B. Sajadi, R. Wauthle, J. Schrooten, H. Weinans, A.A. Zadpoor, Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells, J. Mech. Behav. Biomed. Mater. 34, 106–115 (2014) [Google Scholar]
  21. G. Bergmann, A. Graichena, A. Rohlmann, B. Bender, G.N. Heinleina, M.O. Duda, M.M. Helle Morlock, Realistic loads for testing hip implants, Bio-Med. Mater. Eng. 20, 65–75 (2010) [Google Scholar]
  22. S. Mohamed, B. Halima Shamaz, Bone tissue engineering and bony scaffolds, Int. J. Dent. Oral Health 1, 15–20 (2015) [Google Scholar]
  23. A.S. Al-Aboodi, A.A. Al-Nasser, Bone porosity modeling and FE simulation, Int. J. Adv. Mech. Aeron. Eng. 2, (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.