Int. J. Simul. Multidisci. Des. Optim.
Volume 12, 2021
Advances in Modeling and Optimization of Manufacturing Processes
Article Number 13
Number of page(s) 8
Published online 18 August 2021
  1. C. Duan, W. Wang, Q. Xie, Fabrication of nanofluidic devices, Biomicrofluidics 7, 1932–1058 (2013) [CrossRef] [Google Scholar]
  2. A. Dalili, S. Chandra, J. Mostaghimi, Formation of liquid sheets by deposition of droplets on a surface, J. Colloid Interface Sci. 418, 292–299 (2014) [CrossRef] [Google Scholar]
  3. Y. Li, J.X. Dong, D. Li, Molecular dynamics simulation of nanoscale liquid flows, Microfluid. Nanofluid. 9, 1011–1031 (2010) [CrossRef] [Google Scholar]
  4. J. Eggers, Dynamics of liquid nanojets, Phys. Rev. Lett. 89, 1–4 (2002) [CrossRef] [PubMed] [Google Scholar]
  5. N. Gopan, S.P. Sathian, A Langevin dynamics study of nanojets, J. Mol. Liquids 200, 246–258 (2014) [CrossRef] [Google Scholar]
  6. J.W. Lin, S.X. Chu, Molecular dynamics simulations of nanoscale water jet, in: Proceedings of MNHT2008 Micro/Nanoscale Heat Transfer International Conference , Taiwan, January 2008, pp. 6–9 [Google Scholar]
  7. N. Gopan, S.P. Sathian, The role of thermal fluctuations on the formation and stability of nano-scale drops, Colloids Surf. A Physicochem Eng. Asp. 432, 19–28 (2013) [CrossRef] [Google Scholar]
  8. N. Gopan, S.P. Sathian, A langevin dynamics study of nanojets, J. Mol. Liq. 200, 246–258 (2014) [CrossRef] [Google Scholar]
  9. M. Jia, B.Y. Jae, Z. Xuehua, Viscosity-mediated growth and coalescence of surface nanodroplets, J. Phys. Chem. C 124, 12476–12484 (2020) [CrossRef] [Google Scholar]
  10. J. Zhao, Study on the cylindrical liquid nanojet break-up phenomenon, J. Thermal Sci. 24, 194–201 (2015) [CrossRef] [Google Scholar]
  11. A. Suphanat, Y.M.A. Elisa, Y. Jingjie, Y.N. Teng, Many-body dissipative particle dynamics simulations of nanodroplet formation in 3D nano-inkjet printing, Modell. Simulation Mater. Sci. Eng. 27 (2019) [Google Scholar]
  12. Q. Jiasheng, F.A. Gilmar, Z. Xuehua, Surface nanodroplets: formation, dissolution, and applications, Langmuir 35, 12583–12596 (2019) [CrossRef] [Google Scholar]
  13. T.H. Fang, W.J. Chang, S.C. Liao, Effects of temperature and aperture size on nanojet ejection process by molecular dynamics simulation, Microelectron. J. 35, 687–691 (2004) [CrossRef] [Google Scholar]
  14. J. Huicong, T. Hua, One dimensional model for droplet ejection process in inkjet devices, MDPI and ACS Style, 28 (2018) [Google Scholar]
  15. Q. Li, Q. Liu, Molecular dynamics simulation of heat transfer with effects of fluid–lattice interactions, Int. J. Heat Mass Transfer 55, 8088–8092 (2012) [CrossRef] [Google Scholar]
  16. H.J. Lin, H.C. Wu, T.R. Shan, W.S. Hwang, The effects of operating parameters on micro-droplet formation in a piezoelectric inkjet printhead using a double pulse voltage pattern, Mater. Trans. 47, 375–382 (2006) [CrossRef] [Google Scholar]
  17. Q.N. Van, S.P. Xuan, W.L. Jau, Separation criteria of nanoscale water droplets from a nozzle plate surface, in: MATEC Web of Conferences , 2018, 169, 01016 [CrossRef] [EDP Sciences] [Google Scholar]
  18. S.L. Manzello, J.C. Yang, An experimental investigation of water droplet impingement on a heated wax surface, Int. J. Heat Mass Transfer 47, 1701–1709 (2004) [CrossRef] [Google Scholar]
  19. J.W. Lin, Studying on water nanojet ejection and the wetting phenomena on the nozzle surface, Microfluid. Nanofluid. 13, 37–48 (2012) [CrossRef] [Google Scholar]
  20. Q.N. Van, W.L. Jau, Investigation of temperature effects on nanoscale water droplet separation onto a fixed solid plate, Simulation: Trans. Soc. Model. Simulation Int. 1–9 (2016) [Google Scholar]
  21. M. Levitt, M. Hirshberg, R. Sharon, K.E. Laidig, V. Daggett, Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution, J. Phys. Chem. B 101, 5051–5061 (1997) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.