Int. J. Simul. Multidisci. Des. Optim.
Volume 12, 2021
Computation Challenges for engineering problems
Article Number 11
Number of page(s) 10
Published online 22 July 2021
  1. U.M. Dilberoglu, B. Gharehpapagh, U. Yaman, M. Dolen, The role of additive manufacturing in the era of Industry 4.0, Proc. Manufactur. 11, 545–554 (2017) [Google Scholar]
  2. M. Leino, J. Pekkarinen, R. Soukka, The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing enabling circular economy, Phys. Proc. 83, 752–760 (2016) [Google Scholar]
  3. B. Cheng, S. Shrestha, K. Chou, Stress and deformation evaluations of scanning strategy effect in selective laser melting, Addit. Manufactur. 12, 240–251 (2016) [Google Scholar]
  4. L. Costa, T. Reti, A.M. Deus, R. Vilar, Simulation of layer overlap tempering kinetics in steel parts deposited by laser cladding, in Proceedings of International Conference on Metal Powder Deposition for Rapid Manufacturing. MPIF, Princeton, NJ, 2002, p. 172–176 [Google Scholar]
  5. J.C. Heigel, P. Michaleris, T.A. Palmer, In situ monitoring and characterization of distortion during laser cladding of Inconel® 625, J. Mater. Process. Technol. 220, 135–145 (2015) [Google Scholar]
  6. G.A. Ravi, X.J. Hao, N. Wain, X. Wu, M.M. Attallah, Direct laser fabrication of three dimensional components using SC420 stainless steel, Mater. Des. 47, 731–736 (2013) [Google Scholar]
  7. F. Cordovilla, P. Álvarez, A. García-Beltrán, M.A. Montealegre, J.L. Ocana, Non-linear thermal model of the direct laser melting process considering the adhesion of the consolidated material to the substrate using a domain with discontinuous material properties, in Proceedings of Lasers in Manufacturing (2019) [Google Scholar]
  8. D.M. Goodarzi, J. Pekkarinen, A. Salminen, Effect of process parameters in laser cladding on substrate melted areas and the substrate melted shape, J. Laser Appl. 27, S29201 (2015) [Google Scholar]
  9. H. Tian, X. Chen, Z. Yan, X. Zhi, Q. Yang, Z. Yuan, Finite-element simulation of melt pool geometry and dilution ratio during laser cladding, Appl. Phys. A 125 (2019) [Google Scholar]
  10. W. Ya, B. Pathiraj, S. Liu, 2D modelling of clad geometry and resulting thermal cycles during laser cladding, J. Mater. Process. Technol. 230, 217–232 (2016) [Google Scholar]
  11. D.J. Corbin, A.R. Nassar, E.W. Reutzel, A.M. Beese, N.A. Kistler, Effect of directed energy deposition processing parameters on laser deposited Inconel® 718: External morphology, J. Laser Appl. 29, 022001 (2017) [Google Scholar]
  12. J.I. Arrizubieta, A. Lamikiz, F. Klocke, S. Martínez, K. Arntz, E. Ukar, Evaluation of the relevance of melt pool dynamics in laser material deposition process modeling, Int. J. Heat Mass Transfer 115, 80–91 (2017) [Google Scholar]
  13. H. Liu, X. Qin, S. Huang, Z. Hu, M. Ni, Geometry modeling of single track cladding deposited by high power diode laser with rectangular beam spot, Opt. Lasers Eng. 100, 38–46 (2018) [Google Scholar]
  14. J. Posada, C. Toro, I. Barandiaran, D. Oyarzun, D. Stricker, R. de Amicis, E.B. Pinto, P. Eisert, J. Dollner, I. Vallarino, Visual computing as a key enabling technology for Industrie 4.0 and industrial internet, IEEE Comput. Graph. Appl. 35, 2640 (2015) [Google Scholar]
  15. M. Garetti, P. Rosa, S. Terzi, Life cycle simulation for the design of product-service systems, Comput. Ind. 63, 361–369 (2012) [Google Scholar]
  16. T. DebRoy, W. Zhang, J. Turner, S.S. Babu, Building digital twins of 3D printing machines, Scr. Mater. 135, 119–124 (2017) [Google Scholar]
  17. A. Gaikwad, R. Yavari, M. Montazeri, K. Cole, L. Bian, P. Rao, Toward the digital twin of additive manufacturing: integrating thermal simulations, sensing, and analytics to detect process faults, IISE Trans. 52, 1204–1217 (2020) [Google Scholar]
  18. Z. Yang, D. Eddy, S. Krishnamurty, I. Grosse, P. Denno, Y. Lu, P. Witherell, Investigating grey-box modeling for predictive analytics in smart manufacturing, in Volume 2B: 43rd Design Automation Conference. American Society of Mechanical Engineers (2017) [Google Scholar]
  19. G.L. Knapp, T. Mukherjee, J.S. Zuback, H.L. Wei, T.A. Palmer, A. De, T. DebRoy, Building blocks for a digital twin of additive manufacturing, Acta Mater. 135, 390–399 (2017) [Google Scholar]
  20. L. Zhang, X. Chen, W. Zhou, T. Cheng, L. Chen, Z. Guo, B. Han, L. Lu, Digital twins for additive manufacturing: a state-of the-art review, Appl. Sci. 10 (2020) [Google Scholar]
  21. A. Ibrahimbegovic, Nonlinear solid mechanics: theoretical formulations and finite element solution methods (Springer Science Business Media, 2009), Vol. 160 [Google Scholar]
  22. D. Mejia, A. Moreno, A. Arbelaiz, J. Posada, O. Ruiz-Salguero, R. Chopitea, Accelerated thermal simulation for three-dimensional interactive optimization of computer numeric control sheet metal laser cutting, J. Manufactur. Sci. Eng. 140 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.