Int. J. Simul. Multidisci. Des. Optim.
Volume 12, 2021
Simulation and Optimization for Industry 4.0
Article Number 14
Number of page(s) 6
Published online 24 August 2021
  1. M. Nag, J. Singh, A. Kumar, K. Singh, A high sensitive graphene piezoresistive MEMS pressure sensor by integration of rod beams in silicon diaphragm for low pressure measurement application, Microsyst. Technolog. 26, 2971–2976 (2020) [CrossRef] [Google Scholar]
  2. M. Nag, M. Lamba, K. Singh, A. Kumar, Modelling and simulation of MEMS graphene pressure sensor for healthcare devices, in Proceedings of International Conference in Mechanical and Energy Technology (Springer, Singapore, 2020), pp. 607–612 [CrossRef] [Google Scholar]
  3. Y. Pang, Z. Yang, Y. Yang, X. Wu, Y. Yang, T.L. Ren, Graphene based wearable sensors for healthcare, in 2019 International Conference on IC Design and Technology (ICICDT) (IEEE, 2019), pp. 1–4 [Google Scholar]
  4. Y. Shi, L. Ye, A.H. Zehri, N. Logothetis, P. Su, N. Wang, J. Liu, Fabrication and characterization of graphene based film, in 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac) (IEEE, 2017), pp. 162–166 [CrossRef] [Google Scholar]
  5. H. Tian, Y. Shu, X.F. Wang, M.A. Mohammad, Z. Bie, Q.Y. Xie et al., A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range, Sci. Rep. 5, 1–6 (2015) [CrossRef] [Google Scholar]
  6. M.A. Shazni, M.W. Lee, H.W. Lee, Highly-sensitive graphene-based flexible pressure sensor platform, Sains Malaysiana 46, 1155–1161 (2017) [CrossRef] [Google Scholar]
  7. M. Nie, Y.H. Xia, H.S. Yang, A flexible and highly sensitive graphene-based strain sensor for structural health monitoring, Cluster Comput. 22, 8217–8224 (2019) [CrossRef] [Google Scholar]
  8. B. Saha, S. Baek, J. Lee, Highly sensitive bendable and foldable paper sensors based on reduced graphene oxide, ACS Appl. Mater. Interfaces 9, 4658–4666 (2017) [CrossRef] [Google Scholar]
  9. T. Yang, X. Jiang, Y. Zhong, X. Zhao, S. Lin, A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring, ACS Sensors 2, 967–974 (2017) [CrossRef] [Google Scholar]
  10. S. Chun, Y. Kim, H.S. Oh, G. Bae, W. Park, A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing, Nanoscale 7, 11652–11659 (2015) [CrossRef] [PubMed] [Google Scholar]
  11. A. Rinaldi, A. Tamburrano, M. Fortunato, M.S. Sarto, A flexible and highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets, Sensors 16, 2148 (2016) [CrossRef] [Google Scholar]
  12. N. Inoue, H. Onoe, Graphene-based inline pressure sensor integrated with microfluidic elastic tube, J. Micromech. Microeng. 28, 014001 (2017) [CrossRef] [Google Scholar]
  13. S. Chun, H. Jung, Y. Choi, G. Bae, J.P. Kil, W. Park, A tactile sensor using a graphene film formed by the reduced graphene oxide flakes and its detection of surface morphology, Carbon 94, 982–987 (2015) [CrossRef] [Google Scholar]
  14. C.B. Huang, S. Witomska, A. Aliprandi, M.A. Stoeckel, M. Bonini, A. Ciesielski, P. Samorì, Molecule–graphene hybrid materials with tunable mechanoresponse: highly sensitive pressure sensors for health monitoring, Adv. Mater. 31, 1804600 (2019) [CrossRef] [Google Scholar]
  15. U.S. Kumar, N.J. Babu, Design and simulation of MEMS Piezoresistive Pressure Sensor to Improve the sensitivity, Int. J. Innov. Res. Electr. Electr. Instrum. Control Eng. 3 (2015) [Google Scholar]
  16. S. Meti, K.B. Balavalad, A.C. Katageri, B.G. Sheeparamatti, Sensitivity enhancement of piezoresistive pressure sensor with meander shape piezoresistor, in 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS) (IEEE, 2016), pp. 890–895 [CrossRef] [Google Scholar]
  17. M. Hayati, M. Fathipour, H.S. Vaziri, Design and analysis of hairpin piezoresistive pressure sensor with improved linearity using square and circular diaphragms, Micro Nano Lett. 13, 1046–1051 (2018) [CrossRef] [Google Scholar]
  18. J. Ou, J. Wang, S. Liu, B. Mu, J. Ren, H. Wang, S. Yang, Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly, Langmuir 26, 15830–15836 (2010) [CrossRef] [Google Scholar]
  19. Q. Hongwei, Y. Suying, Z. Rong, M. Ganru, Z. Weixin, M. Xiaoqiang, L. Lei, Polysilicon piezoresistive pressure sensor and its temperature compensation, in 1998 5th International Conference on Solid-State and Integrated Circuit Technology. Proceedings (Cat. No. 98EX105) (IEEE, 1998), pp. 914–916 [CrossRef] [Google Scholar]
  20. M.H.M. Khir, P. Qu, H. Qu, A low-cost CMOS-MEMS piezoresistive accelerometer with large proof mass, Sensors 11, 7892–7907 (2011) [CrossRef] [Google Scholar]
  21. M. Nag, J. Singh, A. Kumar, P.A. Alvi, K. Singh, Sensitivity enhancement and temperature compatibility of graphene piezoresistive MEMS pressure sensor, Microsyst. Technolog. 25, 3977–3982 (2019) [CrossRef] [Google Scholar]
  22. W.B. Zimmerman, Introduction to COMSOL multiphysics, in Multiphysics Modeling with Finite Element Methods Citation Key: Zimmerman 2006 (World Scientific Publishing Company, 2006), pp. 1–26 [Google Scholar]
  23. A.A. Barlian, W.T. Park, J.R. Mallon, A.J. Rastegar, B.L. Pruitt, Semiconductor piezoresistance for Microsystems, Proc. IEEE 97, 513–552 (2009) [CrossRef] [Google Scholar]
  24. S.T.A. Hamdani, A. Fernando, The application of a piezo-resistive cardiorespiratory sensor system in an automobile safety belt, Sensors 15, 7742–7753 (2015) [CrossRef] [Google Scholar]
  25. K.Y. Madhavi, M. Krishna, C.C. Murthy, Effect of diaphragm geometry and piezoresistor dimensions on the sensitivity of a piezoresistive micropressure sensor using finite element analysis, IJESE 1 (2013) [Google Scholar]
  26. J. Akhtar, B.B. Dixit, B.D. Pant, V.P. Deshwal, Polysilicon piezoresistive pressure sensors based on MEMS technology, IETE J. Res. 49, 365–377 (2003) [CrossRef] [Google Scholar]
  27. N. Barakat, A. Plotkowski, H. Jiao, Design and Computational analysis of Diaphragm Based Piezoresistive Pressure Sensors for Integration into Undergraduate Curriculum (2011) [Google Scholar]
  28. T. Guan, F. Yang, W. Wang, X. Huang, B. Jiang, D. Zhang, The design and analysis of piezoresistive shuriken-structured diaphragm micro-pressure sensors, J. Microelectromech. Syst. 26, 206–214 (2016) [CrossRef] [Google Scholar]
  29. J.C. Doll, S.J. Park, B.L. Pruitt, Design optimization of piezoresistive cantilevers for force sensing in air and water, J. Appl. Phys. 106, 064310 (2009) [CrossRef] [Google Scholar]
  30. J. Sosa, J.A. Montiel-Nelson, R. Pulido, J.C. Garcia-Montesdeoca, Design and optimization of a low power pressure sensor for wireless biomedical applications, J. Sens. 2015 (2015) [Google Scholar]
  31. S.K. Jindal, S.P. Magam, M. Shaklya, Analytical modeling and simulation of MEMS piezoresistive pressure sensors with a square silicon carbide diaphragm as the primary sensing element under different loading conditions, J. Comput. Electr. 17, 1780–1789 (2018) [CrossRef] [Google Scholar]
  32. A.E. Kubba, A. Hasson, A.I. Kubba, G. Hall, A micro-capacitive pressure sensor design and modelling, J. Sens. Sens. Syst. 5, 95–112 (2016) [CrossRef] [Google Scholar]
  33. M. Nag, M. Lamba, K. Singh, A. Kumar, Modelling and simulation of MEMS graphene pressure sensor for healthcare devices, in Proceedings of International Conference in Mechanical and Energy Technology (Springer, Singapore, 2020), pp. 607–612 [CrossRef] [Google Scholar]
  34. M. Nag, A. Kumar, K. Singh, B. Pratap, Graphene based flexible piezoresistive pressure sensor for electric vehicles applications, in AIP Conference Proceedings (AIP Publishing LLC, 2020), Vol. 2294, p. 020009 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.