Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 11, 2020
Article Number 11
Number of page(s) 10
DOI https://doi.org/10.1051/smdo/2020006
Published online 24 July 2020
  1. K. Deb, Multiobjective optimization, in Search Methodologies (Springer, US, 2014), pp. 403–449 [CrossRef] [Google Scholar]
  2. C.A.C. Coello, Evolutionary multiobjective optimization: a historical view of the field, IEEE Comput. Intell. Mag. 1, 28–36 (2006) [CrossRef] [Google Scholar]
  3. A. Konak, D.W. Coit, A.E. Smith, Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Safety 91, 992–1007 (2006) [CrossRef] [Google Scholar]
  4. X. Yang, P. Deb, Multiobjective cuckoo search for design optimization, Comput. Oper. Res. 40, 1616–1624 (2013) [CrossRef] [Google Scholar]
  5. J. Zhang, A.C. Sanderson, JADE: adaptive differential evolution with optional external archiv, IEEE Trans. Evol. Comput. 13, 945–958 (2009) [CrossRef] [Google Scholar]
  6. D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global. Optim. 39, 459–471 (2007) [CrossRef] [MathSciNet] [Google Scholar]
  7. C.O. Ourique, E.C. Biscaia, J.C. Pinto, The use of particle swarm optimization for dynamical analysis in chemical processes, Comput. Chem. Eng. 26, 1783–1793 (2002) [CrossRef] [Google Scholar]
  8. A. Bonilla-Petriciolet, J.G. Segovia-Hernandez, Particle swarm optimization for phase stability and equilibrium calculations in reactive systems. Comput. Aid. Ch. 26, 635–640 (2009) [Google Scholar]
  9. A.A. Salman, I. Ahmad, M.G.H. Omran, G. Mohammad, Frequency assignment problem in satellite communications using differential evolution, Comput. Oper. Res. 37, 2152–2163 (2010) [CrossRef] [Google Scholar]
  10. J. Zhang, L. Xie, S. Wang, Particle swarm for the dynamic optimization of biochemical processes, Comput. Aid. Ch. 21, 497–502 (2006) [Google Scholar]
  11. K. Deb, A. Pratab, S. Agrawal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6, 182–197 (2002) [Google Scholar]
  12. F. Neri, V. Tirronen, Recent advances in differential evolution: a survey and experimental analysis, Artif. Intell. Rev. 33, 61–106 (2010) [CrossRef] [Google Scholar]
  13. D. Karaboga, B. Akay, A comparative study of artificial bee colony algorithm, Appl. Math. Comput. 214, 108–132 (2009) [Google Scholar]
  14. C. Igel, N. Hansen, S. Roth, Covariance matrix adaptation for multiobjective optimization, Evol. Comput. 15, 1–28 (2007) [CrossRef] [Google Scholar]
  15. H. Smaoui, A. Maqsoud, S. Kaidi, Transmissivity identification by combination of cvfem and genetic algorithm: application to the coastal aquifer, Math. Probl. Eng. 3463607 (2019) [Google Scholar]
  16. P. Civicioglu, E. Besdok, A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms, Artif. Intell. Rev. 39, 315–346 (2013) [CrossRef] [Google Scholar]
  17. R. Storn, K. Price, Differential evolution − a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim. 11, 341–359 (1997) [Google Scholar]
  18. A.K. Qin, P.N. Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, IEEE Trans. Evol. Comput. 3, 1785–1791 (2005) [Google Scholar]
  19. E. Zitzler, M. Laumanns, L. Thiele, SPEA2: improving the strength Pareto evolutionary algorithm, Optim. Control Appl. Ind. Probl 95–100 (2002) [Google Scholar]
  20. G. Maoguo, J. Licheng, D. Haifeng, B. Liefeng, Multiobjective immune algorithm with nondominated neighbor-based selection, Evol. Comput. 16, 225–255 (2008) [CrossRef] [Google Scholar]
  21. P. Civicioglu, Backtracking search optimization algorithm for numerical optimization problems, Appl. Math. Comput. 219, 8121–8144 (2013) [Google Scholar]
  22. K. Guney, A. Durmus, S. Basbug, Backtracking search optimization algorithm for synthesis of concentric circular antenna arrays, Int. J. Antennas Propag. 2014, 11 (2014) [Google Scholar]
  23. J. Lin, Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic systems, Nonlinear Dyn. 80, 209–219 (2015) [CrossRef] [Google Scholar]
  24. R. El Maani, B. Radi, A. El Hami, Multiobjective backtracking search algorithm: application to FSI, Struct. Multidiscip. Optim. 59, 131–151 (2019) [CrossRef] [Google Scholar]
  25. R.R.A. Martins, A.B. Lambe, Multidisciplinary design optimization: a survey of architectures, AIAA J. 51, 2049–2075 (2013) [CrossRef] [Google Scholar]
  26. A. El Hami, B. Radi, Fluid-Structure Interactions and Uncertainties: Ansys and Fluent Tools (Wiley-ISTE, 2017) [CrossRef] [Google Scholar]
  27. A. El Hami, B. Radi, Uncertainty and Optimization in Structural Mechanics (Wiley-ISTE, London, UK, 2013) [CrossRef] [Google Scholar]
  28. B.E. Launder, D.B. Spalding, Lectures in Mathematical Models of Turbulence (Academic Press, London, England, 1972) [Google Scholar]
  29. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32, 1598–1605 (1994) [Google Scholar]
  30. ANSYS, ANSYS Fluent Users Guide, 2018 [Google Scholar]
  31. G. Eggenspieler, Mesh Morphing and Optimizer (ANSYS, Inc, May 14, 2012) [Google Scholar]
  32. P.A.N. Bosman, D. Thierens, The balance between proximity and diversity in multiobjective evolutionary algorithms, IEEE Trans. Evol. Comput. 7, 174–188 (2003) [CrossRef] [Google Scholar]
  33. T.J. Coakley, Numerical Simulation of Viscous Transonic Airfoil Flows, NASA Ames Research Center, AIAA-87-0416, 1987 [Google Scholar]
  34. T.L. Hoist, Viscous transonic airfoil workshop compedium of results, AIAA Paper No. 87-1460, 1987 [Google Scholar]
  35. C.D. Harris, Two-Dimensional Aerodynamic Characteristics of the NACA 0012 Airfoil in the Langley 8-foot Transonic Pressure Tunnel (NASA Ames Research Center, NASA TM 81927, 1981) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.