Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 11, 2020
Article Number 10
Number of page(s) 10
DOI https://doi.org/10.1051/smdo/2020002
Published online 24 July 2020
  1. J. Van den Bergh, J. Beliën, P. De Bruecker, E. Demeulemeester, L. De Boeck, Personnel scheduling: A literature review, Eur. J. Operat. Res. 226, 367–385 (2013) [Google Scholar]
  2. E.K. Burke, G. Kendall, E. Soubeiga, A tabu-search hyper-heuristic for timetabling and rostering, J. Heuristics 9, 451–470 (2003) [Google Scholar]
  3. P. Brucker, R. Qu, E. Burke, G. Post, A decomposition, construction and post-processing approach for nurse rostering, Multidisciplinary International Scheduling Conference MISTA 2005 , pp. 397–406 (2007) [Google Scholar]
  4. M.N. Azaiez, S.S. Al Sharif, A 0-1 goal programming model for nurse scheduling. Comput. Operat. Res. 32, 491–507 (2005) [Google Scholar]
  5. T.I. Wickert, P. Smet, G.V. Berghe, The nurse rerostering problem: Strategies for reconstructing disrupted schedules, Comput. Operat. Res. 104, 319–337 (2019) [Google Scholar]
  6. F. He, R. Qu, A constraint programming based column generation approach to nurse rostering problems, Comput. Operat. Res. 39, 3331–3343 (2012) [Google Scholar]
  7. S. Abdennadher, H. Schlenker, Interdip − an interactive constraint based nurse scheduler. Proceedings of The First International Conference and Exhibition on The Practical Application of Constraint Technologies and Logic Programming, London , 1999 [Google Scholar]
  8. A. Oughalime, W.R. Ismail, L.C. Yeun, A tabu search approach to the nurse scheduling problem. International Symposium on Information Technology, Kuala Lumpur , 2008 [Google Scholar]
  9. Z. Liu, Z. Liu, Z. Zhu, Y. Shen, J. Dong, Simulated annealing for a multi-level nurse rostering problem in hemodialysis service, Appl. Soft Comput. 64, 148–160 (2018) [Google Scholar]
  10. U. Aickelin, K.A. Dowsland, An indirect genetic algorithm for a nurse-scheduling problem, Comput. Operat. Res. 31, 761–778 (2004) [Google Scholar]
  11. M.A. Awadallah, A.L. Bolaji, M.A. Al-Betar, A hybrid artificial bee colony for a nurse rostering problem. Appl. Soft Comput. 35, 726–739 (2015) [Google Scholar]
  12. E. Özcan Memes, Self-generation and nurse rostering, in E. K. Burke & H. Rudová (Eds.), Practice and Theory of Automated Timetabling VI. PATAT 2006. Lecture Notes in Computer Science, 3867 (Berlin, Springer, 2007), pp. 85–104 [Google Scholar]
  13. T-H. Wu, J-Y. Yeh, Y-M. Lee, A particle swarm optimization approach with refinement procedure for nurse rostering problem, Comput. Operat. Res. 54, 52–63 (2015) [Google Scholar]
  14. M. Hadwan, M. Ayob, N.R. Sabar, R. Qu, A harmony search algorithm for nurse rostering problems, Inf. Sci. 233, 126–140 (2013) [Google Scholar]
  15. R.A.M. Gomes, T.A.M. Toffolo, H.G. Santos, Variable neighborhood search accelerated column generation for the nurse rostering problem. Electron. Notes Discr. Math. 58, 31–38 (2017) [Google Scholar]
  16. C. Valouxis, E. Housos, Hybrid optimization techniques for the workshift and rest assignment of nursing personnel, Artif. Intell. Med. 20, 155–175 (2000) [Google Scholar]
  17. M. Hidayati, A. Wibowo, S. Abdul-Rahman, Preliminary review on population based approaches for physician scheduling, Proceedings of 2018 Indonesian Association for Pattern Recognition International Conference (INAPR), Jakarta, Indonesia , 2018, pp. 90–94 [Google Scholar]
  18. F. Glover, M. Laguna, Tabu search (Kluwer Academic Publisher, Boston, 1997) [Google Scholar]
  19. T. Dias, D. Ferber, C. Souza, A. Moura, Constructing nurse schedules at large hospitals, Int. Trans. Operat. Res. 10, 245–265 (2003) [Google Scholar]
  20. K. Nonobe, T. Ibaraki, A tabu search approach to the constraint satisfaction problem as a general problem solver, Eur. J. Operat. Res. 106, 599–623 (1998) [Google Scholar]
  21. K. Dowsland, Nurse scheduling with tabu search and strategic oscillation, Eur. J. Operat. Res. 106, 393–407 (1998) [Google Scholar]
  22. E. Burke, P. De Causmaecker, G. Vanden Berghe, A hybrid tabu search algorithm for the nurse rostering problem, in: B. McKay, X. Yao, C.S. Newton, J.H. Kim, T. Furuhashi (Eds.), Simulated Evolution and Learning. SEAL 1998. Lecture Notes in Computer Science 1585 , Springer, Berlin, Heidelberg, 1999, pp. 187–194 [Google Scholar]
  23. H.H. Millar, M. Kiragu, Cyclic and non-cyclic scheduling of 12 h shift nurses by network programming, Eur. J. Operat. Res. 104, 582–592 (1998) [Google Scholar]
  24. B. Cheang, H. Li, A. Lim, B. Rodrigues, Nurse rostering problems: a bibliographic survey, Eur. J. Operat. Res. 151, 447–460 (2003) [Google Scholar]
  25. R. Ramli, An evolutionary algorithm for the nurse scheduling problem with circadian rhythms, Unpublished PhD Thesis, Universiti Sains Malaysia, Malaysia, 2004 [Google Scholar]
  26. F. Bellanti, G. Carello, F.D. Croce, R. Tadei, A geedy-based neighborhood search approach to a nurse rostering problem, Eur. J. Operat. Res. 153, 28–40 (2004) [Google Scholar]
  27. F. Bellanti, G. Carello, F.D. Croce, R. Tadei, A tabu search approach to a nurse rostering problem, Proceedings of the 4th Metaheuristics International Conference, MIC 2001, pp. 165–167 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.