Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 11, 2020
Article Number 7
Number of page(s) 5
DOI https://doi.org/10.1051/smdo/2020001
Published online 09 June 2020
  1. J. Lissajous, Mémoire sur l'étude optique des mouvements vibratoires, Comptes Rendus 44, 727 (1857) [Google Scholar]
  2. J. Curie, P. Curie, Développement par pression de l'électricité polaire dans les cristaux hémièdres à faces inclinées. Comptes Rendus 91, 294 (1880) [Google Scholar]
  3. J. Curie, P. Curie, Déformations électrique du quartz. Comptes Rendus 95, 914–197 (1882) [Google Scholar]
  4. P. Salzenstein, Recent progress in the performances of ultrastable Quartz resonators and oscillators, Int. J. Sim. Mult. Des. Optim. 7, A8 (2016) [CrossRef] [Google Scholar]
  5. P. Salzenstein, N. Cholley, A. Kuna, P. Abbé, F. Lardet-Vieudrin, L. Sojdr, J. Chauvin, Distributed amplified ultra-stable signal quartz oscillator based, Measurement 45, 1937–1939 (2012) [CrossRef] [Google Scholar]
  6. P. Salzenstein, A. Kuna, L. Sojdr, F. Sthal, N. Cholley, F. Lefebvre, Frequency stability measurements of ultra-stable BVA resonators and oscillators, Electron. Lett. 46, 686–688 (2010) [CrossRef] [Google Scholar]
  7. A. Kuna, J. Cermak, L. Sojdr, P. Salzenstein, F. Lefebvre, Lowest flicker-frequency floor measured on BVA oscillators, IEEE Trans. UFFC 57, 548–551 (2010) [CrossRef] [Google Scholar]
  8. P. Salzenstein, A. Kuna, L. Sojdr, J. Chauvin, Significant step in ultra high stability quartz crystal oscillators, Electron. Lett. 46, 1433–1434 (2010) [CrossRef] [Google Scholar]
  9. H. Dyball, Dropping through the floor, Electron. Lett. 46, 1411 (2010) [CrossRef] [Google Scholar]
  10. R. Brendel, M. Addouche, P. Salzenstein, E. Rubiola, Y. Shmaliy, Drive level dependence in quartz crystal resonators at low drive levels: a review, IEE Conf. Pub. 2004, 11–18 (2004) [Google Scholar]
  11. X.S. Yao, L. Maleki, Optoelectronic microwave oscillator, J. Opt. Soc. Am. B 13, 1725–1735 (1996) [CrossRef] [Google Scholar]
  12. M. Mortier, P. Goldner, P. Feron, G.M. Stephan, H. Xu, Z.P. Cai, New fluoride glasses for laser applications, J. Non-Cryst. Sol. 326–327, 505–509 (2003) [CrossRef] [Google Scholar]
  13. A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, G.C. Righini, Spherical whispering-gallery-mode microresonators, Laser Photon. Rev. 51, 457–482 (2010) [CrossRef] [Google Scholar]
  14. D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Ultra-high-Q toroid microcavity on a chip, Nature 421, 925–928 (2003) [CrossRef] [PubMed] [Google Scholar]
  15. Y. Dumeige, S. Trebaol, L. Ghisa, T.K.N. Nguyen, H. Tavernier, P. Feron, Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers, J. Opt. Soc. Am. B 25, 2073–2080 (2008) [CrossRef] [Google Scholar]
  16. P. Salzenstein, M. Mortier, H. Sérier-Brault, R. Henriet, A. Coillet, Y.K. Chembo, A. Rasoloniaina, Y. Dumeige, P. Féron, Coupling of high quality factor optical resonators, Phys. Scr. T157, 014024 (2013) [CrossRef] [Google Scholar]
  17. D. Bassir, P. Salzenstein, Optimization of fiber to resonator coupling, Proc. SPIE 11357, 113571P (2020) [Google Scholar]
  18. K. Volyanskiy, P. Salzenstein, H. Tavernier, M. Pogurmirskiy, Y.K. Chembo, L. Larger, Compact Optoelectronic Microwave Oscillators using Ultra-High Q Whispering Gallery Mode Disk-Resonators and Phase Modulation, Opt. Express 18, 22358–22363 (2010) [CrossRef] [Google Scholar]
  19. R. Henriet, P. Salzenstein, D. Ristic, A. Coillet, M. Mortier, A. Rasoloniaina, K. Saleh, G. Cibiel, Y. Dumeige, M. Ferrari, Y.K. Chembo, O. Llopis, P. Féron, High quality factor optical resonators, Phys. Scr. T162, 014032 (2014) [CrossRef] [Google Scholar]
  20. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Laser phase and frequency stabilization using an optical resonator, Appl. Phys. B 31, 97–105 (1983) [NASA ADS] [CrossRef] [Google Scholar]
  21. E. Black, An introduction to Pound-Drever-Hall laser frequency stabilization, Am. J. Phys. 69, 79–87 (2001) [NASA ADS] [CrossRef] [Google Scholar]
  22. K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I.V. Balakireva, P. Salzenstein, A. Coillet, Y.K. Chembo, Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators, Opt. Express 22, 32158–32173 (2014) [CrossRef] [Google Scholar]
  23. R.T. Logan, L. Maleki, M. Shadaram, Stabilization of oscillator phase using a fiber-optic delayline, Proceedings of the 45th Annual Symposium on Frequency Control (IEEE, 1991) , pp. 508–512 (1991) [CrossRef] [Google Scholar]
  24. M. Zarubin, P. Salzenstein, Temperature controlled optical resonator process for optoelectronic oscillator application, Proc. SPIE 9503, 950311 (2015) [CrossRef] [Google Scholar]
  25. P. Salzenstein, S. Diallo, M. Zarubin, Electrically driven thermal annealing set-up dedicated to high quality factor optical resonator fabrication, J. Power Technol. 98, 198–201 (2018) [Google Scholar]
  26. P. Salzenstein, D. Bassir, M. Zarubin, Optimized oven for optical resonator heating process, Proc. SPIE 11334, 1133406 (2019) [Google Scholar]
  27. P. Salzenstein, M. Zarubin, Electronics improvements for optical resonators fabrication, Proc. SPIE 10814, 1081418 (2018) [Google Scholar]
  28. P. Salzenstein, An example of design, optimization, stabilization and noise performances of resonator based optoelectronic oscillators, Int. J. Sim. Mult. Des. Optim. 10, A2 (2019) [CrossRef] [Google Scholar]
  29. F. Sthal, J. Imbaud, X. Vacheret, P. Salzenstein, G. Cibiel, S. Galliou, Computation method for the short-term stability of quartz crystal resonators obtained from passive phase noise measures, IEEE Trans. UFFC 60, 1530–1532 (2013) [CrossRef] [Google Scholar]
  30. R. Kacker, K.D. Sommer, R. Kessel, Evolution of modern approaches to express uncertainty in measurement, Metrologia 44, 513–529 (2007) [CrossRef] [Google Scholar]
  31. W.-K. Lee, D.-H. Yu, C.Y. Park, J. Mun, The uncertainty associated with the weighted mean frequency of a phase-stabilized signal with white phase noise, Metrologia 47, 24–32 (2010) [CrossRef] [Google Scholar]
  32. P. Salzenstein, E. Pavlyuchenko, A. Hmima, N. Cholley, M. Zarubin, S. Galliou, Y.K. Chembo, L. Larger, Estimation of the uncertainty for a phase noise optoelectronic metrology system, Phys. Scr. T 149, 014025 (2012) [CrossRef] [Google Scholar]
  33. P. Salzenstein, E. Pavlyuchenko, Modern approach for estimating uncertainty of a precision optoelectronic phase noise measurement, 2013 International Conference on Advanced Optoelectronics and Lasers (CAOL), Sudak, Ukraine , pp. 340–341 (2013) [CrossRef] [Google Scholar]
  34. E. Pavlyuchenko, P. Salzenstein, Application of modern method of calculating uncertainty to microwaves and opto-electronics, 2014 International Conference on Laser Optics, Saint Petersburg, Russia , June 30 2014-July 4 [Google Scholar]
  35. P. Salzenstein, T.Y. Wu, Uncertainty analysis for a phase-detector based phase noise measurement system, Measurement 85, 118–123 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.