Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 11, 2020
Article Number 8
Number of page(s) 11
DOI https://doi.org/10.1051/smdo/2020003
Published online 23 June 2020
  1. T. Yokota, T. Taguchi, M. Gen, A solution method for optimal weight design problem of the gear using genetic algorithms, Comput. Ind. Eng. 35, 523–526 (1998) [CrossRef] [Google Scholar]
  2. V. Savsani, R.V. Rao, D.P. Vakharia, Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms, Mech. Mach. Theory 45, 531–541 (2010) [CrossRef] [Google Scholar]
  3. E.S. Maputi, R. Arora, Design optimization of a three-stage transmission using advanced optimization techniques, Int. J. Simul. Multidiscip. Des. Optim. 10, A8 (2019) [CrossRef] [Google Scholar]
  4. A. Zolfaghari, M. Goharimanesh, A.A. Akbari, Optimum design of straight bevel gears pair using evolutionary algorithms, J. Br. Soc. Mech. Sci. Eng. 39, 2121–2129 (2017) [CrossRef] [Google Scholar]
  5. Y.K. Mogal, V.D. Wakchaure, A multi-objective optimization approach for design of worm and worm wheel based on genetic algorithm, Bonfring Int. J. Man Mach. Interface 1, 08 (2013) [Google Scholar]
  6. K. Tamboli, S. Patel, P.M. George, R. Sanghvi, Optimal design of a heavy-duty helical gear pair using particle swarm optimization technique, in Proc. Second International Conference on Innovations in Automation and Mechatronics Engineering, ICIAME 2014, Vallabh Vidyanagar, India, 2014, pp. 513–519 [Google Scholar]
  7. P. Rai et al., Volume optimization of helical gear with profile shift using real coded genetic algorithm, Proc. Comput. Sci. 133, 718–724 (2018) [CrossRef] [Google Scholar]
  8. E.S. Maputi, R. Arora, Multi-objective spur gear design using teaching learning-based optimization and decision-making techniques, Cogent Eng. 6, 1 (2019) [CrossRef] [Google Scholar]
  9. L. Kaiyue, C. Guoding, L. Deng, Study of the influence of lubrication parameters on gear lubrication properties, Ind. Lubric. Tribol. 68, 647–657 (2016) [CrossRef] [Google Scholar]
  10. S. Baglioni, F. Cianetti, L. Landi, Influence of the addendum modification on spur gear efficiency, Mech. Mach. Theory 49, 216–233 (2012) [Google Scholar]
  11. F.I. Petrescu, R.V. Petrescu, High efficiency gears, Facta Univ. Ser. Mech. Eng. 12, 51–60 (2014) [Google Scholar]
  12. C. Wang, S. Wang, G. Wang, Volume models for different structures of spur gear, Aust. J. Mech. Eng. (2017), DOI: 10.1080/14484846.2017.1381373 [Google Scholar]
  13. S. Golabi, J.J. Fesharaki, M. Yazdipoor, Gear train optimization based on minimum volume/weight design, Mech. Mach. Theory 73, 197–217 (2014) [CrossRef] [Google Scholar]
  14. BS-ISO 6336-3:2006, ‘Calculation of load capacity of spur and helical gears − Part 3: Calculation of tooth bending strength’, p. 5 [Google Scholar]
  15. M. Dörterler, İ. Şahin, H. Gökçe, A grey wolf optimizer approach for optimal weight design problem of the spur gear (2018) DOI: 10.1080/0305215X.2018.1509963 [Google Scholar]
  16. A. Messac, Optimization in Practice with MATLAB: For Engineering Students and Professionals (Cambridge University Press, 2015), 147p [Google Scholar]
  17. D. Das, S. Bhattacharya, B. Sarkar, Decision-based design-driven material selection: a normative-prescriptive approach for simultaneous selection of material and geometric variables in gear design, Mater. Des. 92, 787–793 (2016) [CrossRef] [Google Scholar]
  18. J. Arora, Introduction to Optimum Design, Third Edition (2011) [Google Scholar]
  19. K. Deb, S. Jain, Multi-speed gearbox design using multi-objective evolutionary algorithms, J. Mech. Des. 125, 609 (2003) [CrossRef] [Google Scholar]
  20. C. Gologlu, M. Zeyveli, A genetic approach to automate preliminary design of gear drives, Comput. Ind. Eng. 57, 1043–1051 (2009) [CrossRef] [Google Scholar]
  21. R. Venkata, Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems, Decis. Sci. Lett. 1–30 (2016) [Google Scholar]
  22. R. Kumar et al., Quality factor optimization of spiral inductor using firefly algorithm and its application in amplifier, Int. J. Adv. Intell. Parad. 11 (2018) DOI: 10.1504/IJAIP.2018.10016456 [Google Scholar]
  23. I. Arora, A. Saha, Software fault prediction using firefly algorithm, Int. J. Intell. Eng. Inf. 6, 356 (2018) [Google Scholar]
  24. M.A. Khodja, M. Tadjine, M.S. Boucherit, M. Benzaoui, Tuning PID attitude stabilization of a quadrotor using particle swarm optimization (experimental). Int. J. Simul. Multisci. Des. Optim. 8, A8 (2017) [CrossRef] [Google Scholar]
  25. J.C. Bansal et al., Inertia weight strategies in Particle swarm optimization. Third World Congress on Nature and Biologically Inspired Computing IEEE 2011. DOI: 10.1109/NaBIC.2011.6089659 [Google Scholar]
  26. R. Arora, S.C. Kaushik, R. Kumar, R. Arora, Multi-objective thermo-economic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making, Int. J. Electr. Power Energy Syst. 74, 25–35 (2016) [CrossRef] [Google Scholar]
  27. R. Arora, S.C. Kaushik, R. Arora, Multi-objective and multi-parameter optimization of two-stage thermoelectric generator in electrically series and parallel configurations through NSGA-II, Energy 91, 242–254 (2015) [CrossRef] [Google Scholar]
  28. R. Arora, S.C. Kaushik, R. Arora, Thermodynamic modeling and multi-objective optimization of two stage thermoelectric generator in electrically series and parallel configuration, Appl. Therm. Eng. 103, 1312–1223 (2016) [CrossRef] [Google Scholar]
  29. R. Kumar, S.C. Kaushik, R. Kumar, R. Hans, Multi-objective thermodynamic optimization of an irreversible regenerative Brayton cycle using evolutionary algorithm and decision making, Ain Shams Eng. J. 7, 741–753 (2016) [CrossRef] [Google Scholar]
  30. R. Arora, S.C. Kaushik, R. Kumar, R. Arora, Soft computing based multi-objective optimization of Brayton cycle power plant with isothermal heat addition using evolutionary algorithm and decision making, Appl. Soft Comput. 46, 267–283 (2016) [CrossRef] [Google Scholar]
  31. R. Arora, S.C. Kaushik, R. Kumar, Multi-objective thermodynamic optimisation of solar parabolic dish Stirling heat engine using NSGA-II and decision making, Int. J. Renew. Energy Technol. 8, 64–92 (2017) [CrossRef] [Google Scholar]
  32. R. Arora, S.C. Kaushik, R. Kumar, Multi-objective thermodynamic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making, Appl. Solar Energy 52, 295–304 (2016) [CrossRef] [Google Scholar]
  33. R. Arora, R. Arora, Multiobjective optimization and analytical comparison of single‐and 2‐stage (series/parallel) thermoelectric heat pumps, Int. J. Energy Res. 42, 1760–1778 (2018) [CrossRef] [Google Scholar]
  34. R. Arora, R. Arora, Multicriteria optimization based comprehensive comparative analyses of single-and two-stage (series/parallel) thermoelectric generators including the influence of Thomson effect. J. Renew. Sustain. Energy 10, 044701 (2018) [CrossRef] [Google Scholar]
  35. S. Ahmed, R. Arora, Optimization of turning parameters of Aluminum 6351 T6 using Taguchi decision making technique, Int. J. Data Netw. Sci. 1, 27–38 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.