Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 11, 2020
Article Number 9
Number of page(s) 11
Published online 14 July 2020
  1. J. Tanesab, D. Parlevliet, J. Whale, T. Urmee, Energy and economic losses caused by dust on residential photovoltaic (PV) systems deployed in different climate areas, Renew. Energy 120 , 401–412 (2018) [CrossRef] [Google Scholar]
  2. G. Picotti, P. Borghesani, G. Manzolini, M.E. Cholette, R. Wang, Development and experimental validation of a physical model for the soiling of mirrors for CSP industry applications, Sol. Energy 173 , 1287–1305 (2018) [CrossRef] [Google Scholar]
  3. K. Ilse, M. Werner, V. Naumann, B.W. Figgis, C. Hagendorf, J. Bagdahn, Microstructural analysis of the cementation process during soiling on glass surfaces in arid and semi-arid climates, Phys. Status Solidi 10 , 525–529 (2016) [Google Scholar]
  4. M. García, L. Marroyo, E. Lorenzo, M. Pérez, Soiling and other optical losses in solar-tracking PV plants in navarra, Prog. Photovolt. Res. Appl. 19 , 211–217 (2011) [CrossRef] [Google Scholar]
  5. T. Sarver, A. Al-Qaraghuli, L.L. Kazmerski, A comprehensive review of the impact of dust on the use of solar energy: history, investigations, results, literature, and mitigation approaches, Renew. Sustain. Energy Rev. 22 , 698–733 (2013) [CrossRef] [Google Scholar]
  6. H. Hottel, B. Woertz, Performance of flat-plate solar-heat collectors, Trans. ASME Am. Soc. Mech. Eng. U.S.A. 64 (1942) [Google Scholar]
  7. H.P. Garg, Effect of dirt on transparent covers in flat-plate solar energy collectors, Sol. Energy 15 , 299–302 (1974) [CrossRef] [Google Scholar]
  8. I.I. Mailuha, H. Murase, Knowledge engineering-based studies on solar energy utilization in Kenya, Agric. Mech. Asia Afr. Lat. Am. 25 , 13–6 (1994) [Google Scholar]
  9. S.A.M. Said, Effects of dust accumulation on performances of thermal and photovoltaic flat-plate collectors, Appl. Energy 37 , 73–84 (1990) [CrossRef] [Google Scholar]
  10. B. Nimmo, S.A.M. Said, Effects of dust on the performance of thermal and photovoltaic flat plate collectors in Saudi Arabia − preliminary results 1 , 145–152 (1981) [Google Scholar]
  11. A.M. El-Nashar, The effect of dust accumulation on the performance of evacuated tube collectors, Sol. Energy 53 , 105–115 (1994) [CrossRef] [Google Scholar]
  12. A.A. Hegazy, Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors, Renew. Energy 22 , 525–540 (2001) [CrossRef] [Google Scholar]
  13. J.K. Kaldellis, A. Kokala, Quantifying the decrease of the photovoltaic panels' energy yield due to phenomena of natural air pollution disposal, Energy 35 , 4862–4869 (2010) [CrossRef] [Google Scholar]
  14. D. Goossens, Z.Y. Offer, A. Zangvil, Wind tunnel experiments and field investigations of eolian dust deposition on photovoltaic solar collectors, Sol. Energy 50 , 75–84 (1993) [CrossRef] [Google Scholar]
  15. D. Goossens, E. van Kerschaever, Aeolin dust deposition on photovoltaic solar cells: the effects of wind velocity and airborne dust concentration on cell performance, Sol. Energy 66 , 277–289 (1999) [CrossRef] [Google Scholar]
  16. H.K. Elminir, A.E. Ghitas, R.H. Hamid, F. El-Hussainy, M.M. Beheary, K.M. Abdel-Moneim, Effect of dust on the transparent cover of solar collectors, Energy Convers. Manag. 47 , 3192–3203 (2006) [Google Scholar]
  17. E.G. Luque, F. Antonanzas-Torres, R. Escobar, Effect of soiling in bifacial PV modules and cleaning schedule optimization, Energy Convers. Manag. 174 , 615–625 (2018) [CrossRef] [Google Scholar]
  18. A. Syafiq, A.K. Pandey, N.N. Adzman, N. A. Rahim, Advances in approaches and methods for self-cleaning of solar photovoltaic panels, Sol. Energy 162 , 597–619 (2018) [CrossRef] [Google Scholar]
  19. Z. Chen, R. Xiong, J. Cao, Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions, Energy 96 , 197–208 (2016) [CrossRef] [Google Scholar]
  20. H. Ajdad, Y. Filali Baba, A. Al Mers, O. Merroun, A. Bouatem, N. Boutammachte, Particle swarm optimization algorithm for optical-geometric optimization of linear fresnel solar concentrators, Renew. Energy 130 , 992–1001 (2019) [CrossRef] [Google Scholar]
  21. M.G. Carneiro, R. Cheng, L. Zhao, Y. Jin, Particle swarm optimization for network-based data classification, Neural Netw. 110 , 243–255 (2019) [CrossRef] [Google Scholar]
  22. Z. Liu, C. Zhu, P. Zhu, W. Chen, Reliability-based design optimization of composite battery box based on modified particle swarm optimization algorithm, Compos. Struct. 204 , 239–255 (2018) [CrossRef] [Google Scholar]
  23. G. Xu, G. Yu, On convergence analysis of particle swarm optimization algorithm, J. Comput. Appl. Math. 333 , 65–73 (2018) [CrossRef] [Google Scholar]
  24. H. Zhou, J. Pang, P.-K. Chen, F.-D. Chou, A modified particle swarm optimization algorithm for a batch-processing machine scheduling problem with arbitrary release times and non-identical job sizes, Comput. Ind. Eng. 123 , 67–81 (2018) [CrossRef] [Google Scholar]
  25. P. Besson, C. Muñoz, G. Ramírez-Sagner, M. Salgado, R. Escobar, W. Platzer, Long-term soiling analysis for three photovoltaic technologies in Santiago region, IEEE J. Photovolt. 7 , 1755–1760 (2017) [CrossRef] [Google Scholar]
  26. E. Urrejola et al., Effect of soiling and sunlight exposure on the performance ratio of photovoltaic technologies in Santiago, Chile, Energy Convers. Manag. 114 , 338–347 (2016) [CrossRef] [Google Scholar]
  27. Y. Jiang, L. Lu, H. Lu, A novel model to estimate the cleaning frequency for dirty solar photovoltaic (PV) modules in desert environment, Sol. Energy 140 , 236–240 (2016) [CrossRef] [Google Scholar]
  28. E. Fuentealba, P. Ferrada, F. Araya, A. Marzo, C. Parrado, C. Portillo, Photovoltaic performance and LCoE comparison at the coastal zone of the Atacama Desert, Chile, Energy Convers. Manag. 95 , 181–186 (2015) [CrossRef] [Google Scholar]
  29. L. Cristaldi et al., Economical evaluation of PV system losses due to the dust and pollution, in 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings , May 2012, pp. 614–618, doi: 10.1109/I2MTC.2012.6229521 [CrossRef] [Google Scholar]
  30. M. Faifer, M. Lazzaroni, S. Toscani, Dust effects on the PV plant efficiency: a new monitoring strategy 580–585 (2014) [Google Scholar]
  31. R.K. Jones et al., Optimized cleaning cost and schedule based on observed soiling conditions for photovoltaic plants in Central Saudi Arabia, IEEE J. Photovolt. 6 , 730–738 (2016) [CrossRef] [Google Scholar]
  32. J. Tanesab, D. Parlevliet, J. Whale, T. Urmee, Dust effect and its economic analysis on PV modules deployed in a temperate climate zone, Energy Proc. 100 , 65–68 (2016) [CrossRef] [Google Scholar]
  33. B. Hammad, M. Al-Abed, A. Al-Ghandoor, A. Al-Sardeah, A. Al-Bashir, Modeling and analysis of dust and temperature effects on photovoltaic systems' performance and optimal cleaning frequency: Jordan case study, Renew. Sustain. Energy Rev. 82 , 2218–2234 (2018) [CrossRef] [Google Scholar]
  34. H. Truong Ba, M.E. Cholette, R. Wang, P. Borghesani, L. Ma, T.A. Steinberg, Optimal condition-based cleaning of solar power collectors, Sol. Energy 157 , 762–777 (2017) [CrossRef] [Google Scholar]
  35. S. Dubey, J.N. Sarvaiya, B. Seshadri, Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world − a review, Energy Proc. 33 , 311–321 (2013) [CrossRef] [Google Scholar]
  36. S.P. Sukhatme, J.K. Nayak, Solar energy: principles of thermal collection and storage , 3rd ed. (Tata McGraw-Hill, New Delhi, 2008) [Google Scholar]
  37. T. Hove, J. Göttsche, Mapping global, diffuse and beam solar radiation over Zimbabwe, Renew. Energy 18 , 535–556 (1999) [CrossRef] [Google Scholar]
  38. MathWorks − Makers of MATLAB and Simulink. (accessedMay 15, 2020) [Google Scholar]
  39. R.-J. Ma, N.-Y. Yu, J.-Y. Hu, Application of particle swarm optimization algorithm in the heating system planning problem, Sci. World J. 2013 , 1–11 (2013) [Google Scholar]
  40. D. Wang, D. Tan, L. Liu, Particle swarm optimization algorithm: an overview, Soft Comput. 22 , 387–408 (2018) [CrossRef] [Google Scholar]
  41. V. Aristidis, P. Maria, L. Christos, Particle swarm optimization (PSO) algorithm for wind farm optimal design, Int. J. Manag. Sci. Eng. Manag. 5 , 53–58 (2010) [Google Scholar]
  42. D. Goossens, Z.Y. Offer, A. Zangvil, Wind tunnel experiments and field investigations of eolian dust deposition on photovoltaic solar collectors, Sol. Energy 50 , 75–84 (1993) [CrossRef] [Google Scholar]
  43. M. Mani, R. Pillai, Impact of dust on solar photovoltaic (PV) performance: research status, challenges and recommendations, Renew. Sustain. Energy Rev. 14 , 3124–3131 (2010) [Google Scholar]
  44. I. Boussaïd, J. Lepagnot, P. Siarry, A survey on optimization metaheuristics, Inf. Sci. 237 , 82–117 (2013) [CrossRef] [MathSciNet] [Google Scholar]
  45. M. Madi, Comparison of meta-heuristic algorithms for solving machining optimization problems, Facta Univ. Ser. Mech. Eng. 11 , 29–44 (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.