Open Access
Review
Issue
Int. J. Simul. Multisci. Des. Optim.
Volume 7, 2016
Article Number A8
Number of page(s) 6
DOI https://doi.org/10.1051/smdo/2016014
Published online 23 December 2016
  1. Norton JR, Cloeren JM, Sulzer PG. 1996. Brief history of the development of ultra-precise oscillators for ground and space applications, in Proceedings of the IEEE Int. Freq. Contr. Symp., p. 47–57. [Google Scholar]
  2. Lissajous J. 1857. Mémoire sur l’étude optique des mouvements vibratoires. Comptes Rendus, 44, 727. [Google Scholar]
  3. Curie J, Curie P. 1880. Développement par pression, de l’électricité polaire dans les cristaux hemiedres à faces inclinées. Comptes Rendus, 91, 294. [Google Scholar]
  4. Curie J, Curie P. 1882. Déformations électrique du quartz. Comptes Rendus, 95, 914–917. [Google Scholar]
  5. Dadourian HM. 1919. On the characteristics of electrically operated tuning forks. Physical Review, 13, 337–359. [CrossRef] [Google Scholar]
  6. Marrison WA. 1948. The evolution of the quartz crystal clock. Bell System Technical Journal, 27(3), 510–588. [CrossRef] [Google Scholar]
  7. Cady WG. 1922. The piezoelectric resonator. Proceedings of the Institute of Radio Engineers, 10, 83–114. [Google Scholar]
  8. Gufflet N, Sthal F, Boy JJ, Bourquin R, Mourey M. 2001. Doubly rotated quartz resonators with a low amplitude-frequency effect: the LD-cut. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48(6), 1681–1685. [CrossRef] [Google Scholar]
  9. Brendel R, Addouche M, Salzenstein P, Rubiola E, Shmaliy YS. 2004. Drive level dependence in quartz crystal resonators at low drive levels: a review, in Proc. of the 18th European Frequency and Time Forum, Guilford, UK, IEE Conf. Pub., CP499. p. 11–18. [CrossRef] [Google Scholar]
  10. Clairet A. 2014. Modelisation et analyse numérique de resonateurs a quartz a ondes de volume, PhD Thesis, University of Franche Comte. [Google Scholar]
  11. Clairet A, Laroche T, Couteleau L, Boy JJ. 2013. Experimental and theoritical results on SC-cut quartz resonators collectively realized on 4” wafers, in 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Prague, Czech Republic. p. 662–665. [Google Scholar]
  12. Besson R. 1977. A new electrodeless resonator design, in Proc. 31st Ann. Symp. on Frequency Control, June 1977. p. 147–152. [Google Scholar]
  13. Salzenstein P, Kuna A, Sojdr L, Sthal F, Cholley N, Lefebvre F. 2010. Frequency stability measurements of ultra-stable BVA resonators and oscillators. Electronics Letters, 46(10), 686–688. [Google Scholar]
  14. Walls FL. 1995. The quest to understand and reduce 1/f noise in amplifiers and BAW quartz oscillators, in Proc. of the 9th European Freq. and Time Forum, Besançon, France. p. 227–240. [Google Scholar]
  15. Sthal F, Mourey M, Marionnet F, Walls WF. 2000. Phase noise measurements of 10 MHz BVA quartz crystal resonator. IEEE Trans. on Ultrason. Ferroelec. Freq. Contr., 47(2), 369–373. [CrossRef] [Google Scholar]
  16. Sthal F, Vacheret X, Salzenstein P, Galliou S, Rubiola E, Cibiel G. 2007. Advanced bridge instrument for the measurement of the phase noise and of the short-term frequency stability of ultrastable quartz resonator, in Proceedings of the IEEE Freq. Contr. Symp. & European Freq. and Time Forum, Geneva, Switzerland. p. 254–260. [Google Scholar]
  17. Walls FL. 1997. Suppressed carrier based PM and AM noise measurement techniques, in Proceedings of the IEEE Freq. Contr. Symp, p. 485–492. [Google Scholar]
  18. Sthal F, Imbaud J, Devel M, Salzenstein P, Bourquin R, Cibiel G. 2011. Some considerations on acoustic resonator phase noise modeling and recent short-term stability experimental results, in Frequency Control and the European Frequency and Time Forum (FCS), 2011 Joint Conference of the IEEE International, San Francisco, California, USA, 2–5 May. [Google Scholar]
  19. Sthal F, Galliou S, Abbe P, Vacheret G, Cibiel G. 2007. Ultra stable crystal ovens and simple characterization. Electronics Letters, 43(16), 900–901. [CrossRef] [Google Scholar]
  20. Gray JE, Allan DW. 1974. A Method for Estimating the Frequency Stability of an Individual Oscillator, in Proc. of the 28th Ann. Symp. on Freq. Contr, May 1974. p. 243–246. [Google Scholar]
  21. Allan DW. 1987. Time and frequency (time domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE Trans. on UFFC, 34(6), 647–654. [CrossRef] [Google Scholar]
  22. Brida G. 2002. High resolution frequency stability measurement system. Review of Scientific Instruments, 73(5), 2171–2174. [CrossRef] [Google Scholar]
  23. Kuna A, Cermak J, Sojdr L, Salzenstein P, Lefebvre F. 2010. Lowest flicker-frequency floor measured on BVA oscillators. IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society, 57(3), 548–551. [Google Scholar]
  24. Cermak J, Kuna A, Sojdr L, Salzenstein P. 2007. Short-Term Frequency Stability Measurement of BVA Oscillators, in Proc. of the IEEE Freq. Contr. Symp. & European Freq. and Time Forum, Geneva, Switzerland. p. 1255–1260. [Google Scholar]
  25. Ekstrom CR, Koppang PA. 2006. Error bars for three-cornered hats. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53(5), 876–879. [CrossRef] [Google Scholar]
  26. Vernotte F, Addouche M, Delporte M, Brunet M. 2004. The three cornered hat method: an attempt to identify some clock correlations, in IEEE Freq. Contr. Symp., 23–27 Aug., 2004. p. 482–488. [Google Scholar]
  27. Tavella P, Premoli A. 1993. Estimation of instabilities of N clocks by measuring differences of their readings. Metrologia, 30(5), 479–486. [NASA ADS] [CrossRef] [Google Scholar]
  28. Salzenstein P, Kuna A, Lefebvre F. 2013. Evaluation of the accuracy of the method for measuring state-of-the-art ultra-high stability quartz crystal oscillators, in 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Prague, Czech Republic. p. 157–159. [Google Scholar]
  29. Salzenstein P, Kuna A, Sojdr L, Chauvin J. 2010. Significant step in ultra high stability quartz crystal oscillators. Electronics Letters, 46(21), 1433–1434. [Google Scholar]
  30. Dyball H. 2010. Dropping through the floor. Electronics Letters, 46(21), 1411. [Google Scholar]
  31. Salzenstein P, Cholley N, Kuna A, Abbé P, Lardet-Vieudrin F, Sojdr L, Chauvin J. 2012. Distributed amplified ultra-stable signal quartz oscillator based. Measurement, 45(7), 1937–1939. [CrossRef] [Google Scholar]
  32. Lo A, Haslinger P, Mizrachi E, Anderegg L, Müller H. 2016. Acoustic tests of Lorentz symmetry using quartz oscillators. Physical Review X, 6, 011018. [CrossRef] [Google Scholar]
  33. Goryachev M, Ivanov EN, Tobar ME, Galliou S. 2016. Towards Cryogenic Quartz Oscillators: Coupling of a Bulk Acoustic Wave quartz resonator to a SQUID, in Frequency Control Symposium (IFCS), 2016 IEEE International Date of Conference, 9–12 May. [Google Scholar]
  34. Yao Y. 2015. Fundamental resonance frequency dependence of the proximity effect of quartz crystal resonators. Japanese Journal of Applied Physics, 54(11), 6701. [Google Scholar]
  35. Sthal F, Devel M, Imbaud J, Bourquin R, Ghosh S, Cibiel G. 2016. Study on the origin of 1/f noise in quartz resonators. Journal of Statistical Mechanics: Theory and Experiment, 2016, 054025. [CrossRef] [Google Scholar]
  36. GUM: Guide to the Expression of Uncertainty in Measurement, fundamental reference document, JCGM100:2008 (GUM 1995 minor corrections), http://www.bipm.org/en/publications/guides/gum.html. [Google Scholar]
  37. Salzenstein P, Pavlyuchenko E, Hmima A, Cholley N, Zarubin M, Galliou S, Chembo YK, Larger L. 2012. Estimation of the uncertainty for a phase noise optoelectronic metrology system. Physica Scripta, T149, 014025. [Google Scholar]
  38. Salzenstein P, Wu TY. 2016. Uncertainty analysis for a phase-detector based phase noise measurement system. Measurement, 85, 118–123. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.