Open Access
Issue
Int. J. Simul. Multisci. Des. Optim.
Volume 7, 2016
Article Number A7
Number of page(s) 7
DOI https://doi.org/10.1051/smdo/2016007
Published online 07 December 2016
  1. Abur A, Exposito AG. 2004. Power system state estimation, theory and implementation. Marcel Dekker Inc.: New York. [Google Scholar]
  2. Meliopoulos APS, Fardanesh B, Zelingher S. 2001. Power system state estimation: modeling error effects and impact on system operation. Proceedings of the Hawaii International Conference on System Sciences, January 3–6, 2001, Maui, Hawaii. [Google Scholar]
  3. Schweppe F, Wildes J. 1970. Power system static-state estimation, part 3: implementation. IEEE Power Apparatus and Systems, 89, 130–135. [CrossRef] [Google Scholar]
  4. Holten L, Wu FF, Liu W-HE. 1988. Comparison of different methods for state estimation. IEEE Transactions on Power Systems, 3(4), 1798–1806. [Google Scholar]
  5. Grainger J, Stevenson W. 1994. Power system analysis. McGraw-Hill: New York. [Google Scholar]
  6. Kalman RE. 1960. A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering, 82(Series D), 35–45. [Google Scholar]
  7. Girgis AA. 1982. A new Kalman filtering based digital distance relay. IEEE Transactions on Power Apparatus and System, PAS-101(9), 3471–3480. [CrossRef] [Google Scholar]
  8. Sachdev MS, Wood HC, Johnson NG. 1985. Kalman filtering applied to power system measurements for relaying. IEEE Transactions on Power Apparatus and System, PAS-104(12), 4565–4573. [CrossRef] [Google Scholar]
  9. Beides HM, Heydt GT. 1991. Dynamic state estimation of power system harmonics using Kalman filter methodology. IEEE Transactions on Power Delivery, 6(4), 1663–1670. [CrossRef] [Google Scholar]
  10. Julier SJ, Uhlmann JK. 1997. A new extension of the Kalman filter to nonlinear systems. Proc. SPIE 3068 Signal Processing Sensor Fusion, and Target Recognition VI, Florida, 28 July, 1997. [Google Scholar]
  11. Blood EA, Krogh BH, Ilic MD. 2008. Electric power system static state estimation through Kalman filtering and load forecasting. Power and Energy Society General Meeting Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburg, USA, 2008 IEEE. [Google Scholar]
  12. Hernandez C, Maya-Ortiz P. 2015. Comparison between WLS and Kalman filter method for power system static state estimation. Smart Electric Distribution Systems and Technologies (EDST) 2015 International Symposium on, Vienna, Austria. [Google Scholar]
  13. Zarco P, Exposito AG. 2000. Power system parameter estimation: a survey. IEEE Transactions on Power Systems, 15(1), 216–222. [CrossRef] [Google Scholar]
  14. Chen J, Lio Y. 2012. State estimation and power flow analysis of power system. Journal of Computers, 7(3), 685–691. [Google Scholar]
  15. Liao Y. 2007. State estimation algorithm considering effects of model inaccuracies. IEEE Proceedings, SoutheastCon 2007, Richmond, Virginia. [Google Scholar]
  16. Debs AS, Larson RE. 1970. A dynamic estimator for tracking the state of power system. IEEE Transactions on Power Apparatus and System, PAS-89(7), 1670–1678. [Google Scholar]
  17. Power System Test Case Archive, http://www2.ee.wasington.edu/researc/pstca/. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.