Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 2, Number 1, January 2008
Page(s) 25 - 35
Published online 16 May 2008
  1. P. Alart, A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Meth. Appl. Mech. Eng. 92, 353–375 (1991). [CrossRef] [MathSciNet]
  2. T. Belytschko, W.J.T. Daniel, G. Ventura, A monolithic smoothing-gap algorithm for contact-impact based on the signed distance function. Int. J. Numer. Meth. Eng. 55, 101–125 (2002). [CrossRef]
  3. T. Belytschko, M.O. Neal, Contact-impact by the piball algorithm with penalty and lagrangian methods. Int. J. Numer. Meth. Eng. 31, 547–572 (1991). [CrossRef]
  4. D.J. Benson, J.O. Hallquist, A single surface contact algorithm for the post-buckling analysis of shell structures. Comput. Meth. Appl. Mech. Eng. 78, 141–163 (1990). [CrossRef]
  5. P. Breitkopf, A. Rassineux, J.M. Savignat, P. Villon, Integration and convergence constraints in Diffuse Element Method. Comput. Meth. Appl. Mech. Eng. 193, 1203–1220 (2004). [CrossRef]
  6. P. Breitkopf, A. Huerta, Meshfree and Particle Based Approaches in Computational Mechanics. Kogan Page Science, ISBN 1903996457 (2004).
  7. D. Chamoret, A. Rassineux, J.M. Bergheau, P. Villon, Modelling of contact surface by local hermite diffuse interpolation. Proceedings of ESAFORM 2001, The 4th International ESAFORM Conference on Material Forming, University of Liège, Belgium 1, 179–182 (2001).
  8. D. Chamoret, P. Saillard, A. Rassineux, J.M. Bergheau, New smoothing procedures in contact mechanics. J. Comput. Appl. Math. 168, 107–116 (2004). [CrossRef]
  9. C. Chappuis, A. Rassineux, P. Breitkopf, P. Villon, Improving surface remeshing by feature recognition. Eng. Comput. 20, 202–209 (2004). [CrossRef]
  10. A. Curnier, Q.C. He, A. Klarbring, Continuum mechanics modelling of large deformation contact with friction, in Contact mechanics, M. Raous, M. Jean and J.J Moreau, Eds. Plenum Press (1995), pp. 145–158.
  11. R. Diekmann, J. Hungershö, M. Lux, L. Taenzer, J.M. Wierum, Efficient contact searching for finite element Analysis. European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, Spain (2000).
  12. N. El-Abbasi, S.A. Meguid, A. Czekanski, On the modelling of smooth contact surfaces using cubic splines. Int. J. Numer. Meth. Eng. 50, 953–967 (2001). [CrossRef]
  13. E.G. Nezami, Y.M.A. Hashash, D. Zhao, J. Ghaboussi, A fast contact detection algorithm for 3-D discrete element method. Comput. Geotech. 31, 575–587 (2004). [CrossRef]
  14. L. Fourment, J.L. Chenot, K. Mocellin, Numerical formulations and algorithms for solving contact problems in metal forming simulation. Int. J. Numer. Meth. Eng. 46, 1435–1462 (1999). [CrossRef]
  15. A. Heege, P. Alart, A Frictional contact element for strongly curved contact problems. Int. J. Numer. Meth. Eng. 39, 165–184 (1996). [CrossRef]
  16. A. Klarbring, Large displacement frictional contact: a continuum framework for finite element discretization. Eur. J. Mech. A 14, 237–253 (1995).
  17. G. Kloosterman, A.H. Van Den Boogaard, J. Huetink, An efficient contact search algorithm. The 5th international ESAFORM conference on MATERIAL FORMING. M. Pietrzyk, Z. Mitura, J. Kaczmar, Cracow, Poland (2002), pp. 99–102.
  18. L. Krstulovic-Opara, P. Wriggers, J. Korelc, A C1-continuous formulation for 3D finite deformation frictional contact. Comput. Mech. 29, 27–42 (2002). [CrossRef]
  19. T.A. Laursen, Computational Contact and Impact Mechanics. Springer Verlag (2002).
  20. T.A. Laursen, J.C. Simo, A Continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems. Int. J. Numer. Meth. Eng. 36, 3451–3485 (1993). [CrossRef]
  21. Li S, Dong Qian, Wing Kam Liu, Belytschko T. A meshfree contact-detection algorithm. Comput. Meth. Appl. Mech. Eng. 190, 3271-3292.
  22. W.N. Liu, G. Metschke, H.A. Mang, A note on the algorithmic stabilization of 2D contact analyses, in Computational Methods in Contact Mechanics, L. Gaul, C.A. Brebbia, Wessex Institute of Technology, WITpresss (1999), pp. 231–240.
  23. B. Nayrolles, G. Touzot, P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements. J. Comput. Mech. 10, 307–138 (1992). [CrossRef]
  24. M. Oldenburg, L. Nilsson, The position code algorithm for contact searching. Int. J. Numer. Meth. Eng. 37, 359–386 (1994). [CrossRef]
  25. V. Padmanabhan, T.A. Laursen, A framework for development of surface smoothing procedures in large deformation frictional contact analysis. Finite Elem. Anal. Design 37, 173–198 (2001). [CrossRef]
  26. P. Papadopoulos, R.L. Taylor, A mixed formulation for the finite element solution of contact problems. Comput. Meth. Appl. Mech. Eng. 94, 373–389 (1992). [CrossRef]
  27. G. Pietrzak, A. Curnier, Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment. Comput. Meth. Appl. Mech. Eng. 177, 351–381 (1999). [CrossRef]
  28. M.A. Puso, T.A. Laursen, A 3D contact smoothing method using Gregory patches. Int. J. Numer. Meth. Eng. 54, 1161–1194 (2002). [CrossRef]
  29. A. Rassineux, P. Villon, J.M. Savignat, O. Stab, Surface remeshing by local hermite diffuse interpolation. Int. J. Numer. Meth. Eng. 49, 31–49 (2000). [CrossRef]
  30. Sheng Ping Wang, Eiiji Nakamachi. The inside-outside contact search algorithm for finite element analysis. Int. J. Numer. Meth. Eng. 40, 3665–3685 (1997). [CrossRef]
  31. P. Wriggers, Computat. Contact Mechanics. Wiley (2002).
  32. P. Wriggers, L. Krstulovic-Opara, J. Korelc, Smooth C1-interpolations for two-dimensional frictional contact problems. Int. J. Numer. Meth. Eng. 51, 1469–1495 (2001). [CrossRef]
  33. P. Wriggers, T. Vu Van, E. Stein, Finite element formulation of large deformation impact-contact problems with friction. Comput. Struct. 37, 319–331 (1990).
  34. Z.H. Zhong, L. Nilsson, A contact searching algorithm for general 3-D contact-impact problems. Comput. Struct. 34, 327–335 (1990). [CrossRef]
  35. Z.H. Zhong, L. Nilsson, Automatic contact searching algorithm for dynamic finite element analysis. Comput. Struct. 52, 187–197 (1994). [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.