Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 2, Number 1, January 2008
Page(s) 25 - 35
Published online 16 May 2008
  1. P. Alart, A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Meth. Appl. Mech. Eng. 92, 353–375 (1991). [CrossRef] [MathSciNet] [Google Scholar]
  2. T. Belytschko, W.J.T. Daniel, G. Ventura, A monolithic smoothing-gap algorithm for contact-impact based on the signed distance function. Int. J. Numer. Meth. Eng. 55, 101–125 (2002). [CrossRef] [Google Scholar]
  3. T. Belytschko, M.O. Neal, Contact-impact by the piball algorithm with penalty and lagrangian methods. Int. J. Numer. Meth. Eng. 31, 547–572 (1991). [CrossRef] [Google Scholar]
  4. D.J. Benson, J.O. Hallquist, A single surface contact algorithm for the post-buckling analysis of shell structures. Comput. Meth. Appl. Mech. Eng. 78, 141–163 (1990). [CrossRef] [Google Scholar]
  5. P. Breitkopf, A. Rassineux, J.M. Savignat, P. Villon, Integration and convergence constraints in Diffuse Element Method. Comput. Meth. Appl. Mech. Eng. 193, 1203–1220 (2004). [CrossRef] [Google Scholar]
  6. P. Breitkopf, A. Huerta, Meshfree and Particle Based Approaches in Computational Mechanics. Kogan Page Science, ISBN 1903996457 (2004). [Google Scholar]
  7. D. Chamoret, A. Rassineux, J.M. Bergheau, P. Villon, Modelling of contact surface by local hermite diffuse interpolation. Proceedings of ESAFORM 2001, The 4th International ESAFORM Conference on Material Forming, University of Liège, Belgium 1, 179–182 (2001). [Google Scholar]
  8. D. Chamoret, P. Saillard, A. Rassineux, J.M. Bergheau, New smoothing procedures in contact mechanics. J. Comput. Appl. Math. 168, 107–116 (2004). [CrossRef] [Google Scholar]
  9. C. Chappuis, A. Rassineux, P. Breitkopf, P. Villon, Improving surface remeshing by feature recognition. Eng. Comput. 20, 202–209 (2004). [CrossRef] [Google Scholar]
  10. A. Curnier, Q.C. He, A. Klarbring, Continuum mechanics modelling of large deformation contact with friction, in Contact mechanics, M. Raous, M. Jean and J.J Moreau, Eds. Plenum Press (1995), pp. 145–158. [Google Scholar]
  11. R. Diekmann, J. Hungershö, M. Lux, L. Taenzer, J.M. Wierum, Efficient contact searching for finite element Analysis. European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, Spain (2000). [Google Scholar]
  12. N. El-Abbasi, S.A. Meguid, A. Czekanski, On the modelling of smooth contact surfaces using cubic splines. Int. J. Numer. Meth. Eng. 50, 953–967 (2001). [CrossRef] [Google Scholar]
  13. E.G. Nezami, Y.M.A. Hashash, D. Zhao, J. Ghaboussi, A fast contact detection algorithm for 3-D discrete element method. Comput. Geotech. 31, 575–587 (2004). [CrossRef] [Google Scholar]
  14. L. Fourment, J.L. Chenot, K. Mocellin, Numerical formulations and algorithms for solving contact problems in metal forming simulation. Int. J. Numer. Meth. Eng. 46, 1435–1462 (1999). [CrossRef] [Google Scholar]
  15. A. Heege, P. Alart, A Frictional contact element for strongly curved contact problems. Int. J. Numer. Meth. Eng. 39, 165–184 (1996). [CrossRef] [Google Scholar]
  16. A. Klarbring, Large displacement frictional contact: a continuum framework for finite element discretization. Eur. J. Mech. A 14, 237–253 (1995). [Google Scholar]
  17. G. Kloosterman, A.H. Van Den Boogaard, J. Huetink, An efficient contact search algorithm. The 5th international ESAFORM conference on MATERIAL FORMING. M. Pietrzyk, Z. Mitura, J. Kaczmar, Cracow, Poland (2002), pp. 99–102. [Google Scholar]
  18. L. Krstulovic-Opara, P. Wriggers, J. Korelc, A C1-continuous formulation for 3D finite deformation frictional contact. Comput. Mech. 29, 27–42 (2002). [CrossRef] [Google Scholar]
  19. T.A. Laursen, Computational Contact and Impact Mechanics. Springer Verlag (2002). [Google Scholar]
  20. T.A. Laursen, J.C. Simo, A Continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems. Int. J. Numer. Meth. Eng. 36, 3451–3485 (1993). [CrossRef] [Google Scholar]
  21. Li S, Dong Qian, Wing Kam Liu, Belytschko T. A meshfree contact-detection algorithm. Comput. Meth. Appl. Mech. Eng. 190, 3271-3292. [Google Scholar]
  22. W.N. Liu, G. Metschke, H.A. Mang, A note on the algorithmic stabilization of 2D contact analyses, in Computational Methods in Contact Mechanics, L. Gaul, C.A. Brebbia, Wessex Institute of Technology, WITpresss (1999), pp. 231–240. [Google Scholar]
  23. B. Nayrolles, G. Touzot, P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements. J. Comput. Mech. 10, 307–138 (1992). [CrossRef] [Google Scholar]
  24. M. Oldenburg, L. Nilsson, The position code algorithm for contact searching. Int. J. Numer. Meth. Eng. 37, 359–386 (1994). [CrossRef] [Google Scholar]
  25. V. Padmanabhan, T.A. Laursen, A framework for development of surface smoothing procedures in large deformation frictional contact analysis. Finite Elem. Anal. Design 37, 173–198 (2001). [CrossRef] [Google Scholar]
  26. P. Papadopoulos, R.L. Taylor, A mixed formulation for the finite element solution of contact problems. Comput. Meth. Appl. Mech. Eng. 94, 373–389 (1992). [CrossRef] [Google Scholar]
  27. G. Pietrzak, A. Curnier, Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment. Comput. Meth. Appl. Mech. Eng. 177, 351–381 (1999). [CrossRef] [Google Scholar]
  28. M.A. Puso, T.A. Laursen, A 3D contact smoothing method using Gregory patches. Int. J. Numer. Meth. Eng. 54, 1161–1194 (2002). [CrossRef] [Google Scholar]
  29. A. Rassineux, P. Villon, J.M. Savignat, O. Stab, Surface remeshing by local hermite diffuse interpolation. Int. J. Numer. Meth. Eng. 49, 31–49 (2000). [CrossRef] [Google Scholar]
  30. Sheng Ping Wang, Eiiji Nakamachi. The inside-outside contact search algorithm for finite element analysis. Int. J. Numer. Meth. Eng. 40, 3665–3685 (1997). [CrossRef] [Google Scholar]
  31. P. Wriggers, Computat. Contact Mechanics. Wiley (2002). [Google Scholar]
  32. P. Wriggers, L. Krstulovic-Opara, J. Korelc, Smooth C1-interpolations for two-dimensional frictional contact problems. Int. J. Numer. Meth. Eng. 51, 1469–1495 (2001). [CrossRef] [Google Scholar]
  33. P. Wriggers, T. Vu Van, E. Stein, Finite element formulation of large deformation impact-contact problems with friction. Comput. Struct. 37, 319–331 (1990). [Google Scholar]
  34. Z.H. Zhong, L. Nilsson, A contact searching algorithm for general 3-D contact-impact problems. Comput. Struct. 34, 327–335 (1990). [CrossRef] [Google Scholar]
  35. Z.H. Zhong, L. Nilsson, Automatic contact searching algorithm for dynamic finite element analysis. Comput. Struct. 52, 187–197 (1994). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.