Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 16, 2025
Multi-modal Information Learning and Analytics on Cross-Media Data Integration
Article Number 26
Number of page(s) 15
DOI https://doi.org/10.1051/smdo/2025026
Published online 21 October 2025
  1. M. Setyawan, R. Perkins, Desain user interface sistem order berbasis mobile untuk produk brand clothing pada rown division, IT-Explore: J. Penerapan Teknologi Informasi dan Komunikasi, 1, 62–76 (2022) [Google Scholar]
  2. A.L.S. Lima, C. Gresse von Wangenheim, Assessing the visual esthetics of user interfaces: a ten-year systematic mapping, Int. J. Hum. −Comput. Interact. 38, 144–164 (2022) [Google Scholar]
  3. H. Guo, P. Fang, S. Liu, S. Yang, Research on information visualization design strategy of intelligent parking interface based on situational experience, J. Anhui Univ. Technol. (Social Sciences), 40, 36–39 (2023) [Google Scholar]
  4. M Xu, Research on interface design of ship intelligent navigation system based on visual communication, Ship Sci. Technol. 45, 166–169 (2023) [Google Scholar]
  5. A. Plopski, T. Hirzle, N. Norouzi, L. Qian, G. Bruder, T. Langlotz, The eye in extended reality: a survey on gaze interaction and eye tracking in head-worn extended reality, ACM Comput. Surv. (CSUR) 55, 1–39 (2022) [Google Scholar]
  6. M.F. Santoso, Implementation of UI/UX concepts and techniques in web layout design with figma, J. Teknologi Dan Sistem Informasi Bisnis, 6, 279–285 (2024) [Google Scholar]
  7. W. Li, Y. Zhou, S. Luo, Y. Dong, Design factors to improve the consistency and sustainable user experience of responsive interface design, Sustainability 14, 9131 (2022) [Google Scholar]
  8. X. Wang, M. Tong, Y. Song, C. Xue, Utilizing multiple regression analysis and entropy method for automated aesthetic evaluation of interface layouts, Symmetry 16, 523 (2024) [Google Scholar]
  9. H. Yan, H. Zhang, L. Liu, D. Zhou, X. Xu, Z. Zhang et al., Toward intelligent design: an AI-based fashion designer using generative adversarial networks aided by sketch and rendering generators, IEEE Trans. Multimedia 25, 2323–2338 (2022) [Google Scholar]
  10. X. Zhan, Y. Xu, Y. Liu, Personalized UI layout generation using deep learning: an adaptive interface design approach for enhanced user experience, J. Artif. Intell. Gen. Sci. F (JAIGS), 6, 463–478 (2024). ISSN: 3006–4023 [Google Scholar]
  11. A. Khamaj, A.M. Ali, Adapting user experience with reinforcement learning: personalizing interfaces based on user behavior analysis in real-time, Alex. Eng. J. 95, 164–173 (2024) [Google Scholar]
  12. R. Guo, N. Kim, J. Lee, Empirical insights into eye-tracking for design evaluation: applications in visual communication and new media design, Behav. Sci. 14, 1231 (2024) [Google Scholar]
  13. Z. Wang, P. Zhan, Eye-tracking-based hidden Markov modeling for revealing within-item cognitive strategy switching, Behav. Res. Methods, 57, 1–38 (2025) [Google Scholar]
  14. J. Yin, J. Sun, J. Li, K. Liu, An effective gaze-based authentication method with the spatiotemporal feature of eye movement, Sensors 22, 3002 (2022) [Google Scholar]
  15. O. Tov, Y. Alaluf, Y. Nitzan, O. Patashnik, D. Cohen-Or, Designing an encoder for stylegan image manipulation, ACM Trans. Graph. (TOG), 40, 1–14 (2021) [Google Scholar]
  16. F. Diaz-Guerra, A. Jimenez-Molina, Continuous prediction of web user visual attention on short span windows based on gaze data analytics, Sensors 23, 2294 (2023) [Google Scholar]
  17. L.M. Vortmann, F. Putze, Combining implicit and explicit feature extraction for eye tracking: attention classification using a heterogeneous input, Sensors 21, 8205 (2021) [Google Scholar]
  18. S. Chakraborty, Z. Wei, C. Kelton et al., Predicting visual attention in graphic design documents, IEEE Trans. Multimedia 25, 4478–4493 (2022) [Google Scholar]
  19. L. Xiao, S. Wang, Mobile marketing interface layout attributes that affect user aesthetic preference: an eye-tracking study, Asia Pac. J. Mark. Logist. 35, 472–492 (2023) [Google Scholar]
  20. Y. Li, Y. Tang, Design on intelligent feature graphics based on convolution operation, Mathematics 10, 384 (2022) [Google Scholar]
  21. M. Lee, Mathematical analysis and performance evaluation of the gelu activation function in deep learning, J. Math. 2023, 4229924 (2023) [Google Scholar]
  22. D. Vidmanov, A. Alfimtsev, Mobile user interface adaptation based on usability reward model and multi-agent reinforcement learning, Multimodal Technol. Interact. 8, 26 (2024) [Google Scholar]
  23. D. Gaspar-Figueiredo, M. Fernández-Diego, S. Abrahão, E. Insfran, A comparative study on reward models for user interface adaptation with reinforcement learning, Empir. Softw. Eng. 30, 1–48 (2025) [Google Scholar]
  24. A. Burnap, J.R. Hauser, A. Timoshenko, Product aesthetic design: a machine learning augmentation, Mark. Sci. 42, 1029–1056 (2023) [Google Scholar]
  25. S. Jang, S. Yoo, N. Kang, Generative design by reinforcement learning: enhancing the diversity of topology optimization designs, Computer-Aided Design 146, 103225 (2022) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.