Issue |
Int. J. Simul. Multidisci. Des. Optim.
Volume 15, 2024
Modelling and Optimization of Complex Systems with Advanced Computational Techniques
|
|
---|---|---|
Article Number | 22 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/smdo/2024019 | |
Published online | 21 October 2024 |
- M.M. Al-Salihi, A. Ayyad, M.S. Al-Jebur, Y. Al-Salihi, F. Hammadi, K. Bowman, M.K. Baskaya, Subcutaneous preservation versus cryopreservation of autologous bone grafts for cranioplasty: a systematic review and meta-analysis, J. Clin. Neurosci 122, 1–9 (2024) [CrossRef] [Google Scholar]
- T. Giang La, K.C.T. Nguyen, M. NeelambarKaipatur, E.H. Lou, P.W. Major, L.H. Le, Investigating transducer-tissue interface pressure for soft tissue stress-strain behavior and the effects on echoic intensities in ultrasound imaging of periodontium, J. Adv. Mater. Technolog. 9, 2301732 (2024) [CrossRef] [Google Scholar]
- D. Mahmoud, K.S. Al-Rubaie, M.A. Elbestawi, The influence of selective laser melting defects on the fatigue properties of Ti6Al4V porosity graded gyroids for bone implants, Int. J. Mech. Sci. 193, 106180 (2020) [Google Scholar]
- Mohamad, F. Khadraoui, D. Chateigner, M. Boutouil, Influence of porous structure of non-autoclaved bio-based foamed concrete on mechanical strength, Buildings 13, 9 (2023) [Google Scholar]
- Kaplan, R. B. US 5282 861. [Google Scholar]
- Composite foam structure. GB 2016 11459 [Google Scholar]
- Fukuda, M. Takemoto, T. Saito, S. Fujibayashi, M. Neo, D.K. Pattanayak, T. Nakamura, Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting, Acta Biomater. 7, 2327–2336 (2011) [CrossRef] [Google Scholar]
- A.I. Kovtunov, T.V. Semistenova, S.V. Myamin et al., Study of the influence of the chemical composition of aluminium solders on the bonding strength of brazed titanium structures, Steel Transl. 53, 958–961 (2023) [CrossRef] [Google Scholar]
- B. Vayssette, N. Saintier, C. Brugger, M. Elmay, E. Pessard, Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: effect on the high cycle fatigue life, Proc. Eng. 213, 89–97 (2018) [CrossRef] [Google Scholar]
- W. Shi, Y. Lin, J. Li, M. Yang, B. Liu, Optimization of mechanical properties of Ti-6Al-4V triply periodic minimal surface porous structures prepared by laser beam powder bed fusion technology based on orientation control, Mater. Sci. Eng. A 894, 146183 (2024) [CrossRef] [Google Scholar]
- S. Limmahakhun, A. Oloyede, K. Sitthiseripratip, Y. Xiao, C. Yan, Stiffness and strength tailoring of cobalt chromium graded cellular structures for stress-shielding reduction, Mater. Des. 114, 633–641 (2017) [CrossRef] [Google Scholar]
- X.-Y. Zhang, G. Fang, J. Zhou, F. Weber, Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: a review, Materials 10, 50 (2017) [CrossRef] [Google Scholar]
- M.A. Surmeneva, R.A. Surmenev, E.A. Chudinova, A. Koptioug, M.S. Tkachev, S.N. Gorodzha, L.-E. Rännar, Fabrication of multiple-layered gradient cellular metal scaffold via electron beam melting for segmental bone reconstruction, Mater. Des. 133, 195–204 (2017) [CrossRef] [Google Scholar]
- M. Dumas, P. Terriault, V. Brailovski, Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials, Mater. Des. 121, 383–392 (2017) [CrossRef] [Google Scholar]
- A.A. Zadpoor, R. Hedayati, Analytical relationships for prediction of the mechanical properties of additively manufactured porous biomaterials, J. Biomed. Mater. Res. A. 104, 3164–3174 (2016) [CrossRef] [Google Scholar]
- X. Yuxing, Y. Yang, X. Haodong, H. Fei, T.C. Hughes, 3D-printed heterogeneous Cu2O monoliths: reusable supports for antibiotic treatment antibiotic treatment of wastewater, J. Hazardous Mater. 436, 129170–129170 (2022) [CrossRef] [Google Scholar]
- D. Debbarma, N. Anand, K. Pal, Exploration of microstructural characteristics, mechanical properties, and in vitro biocompatibility of biodegradable porous magnesium scaffolds for orthopaedic implants, Biomed. Mater. (Bristol, England). 19, 2 (2024) [Google Scholar]
- A. Dukhin, S. Swasey, M. Thommes, A method for pore size and porosity analysis of porous materials using electroacoustics and high frequency conductivity, Colloids Surf. A 437, 127–132 (2013) [CrossRef] [Google Scholar]
- W. Niyou, D.S. Thameem, F.J.Y. Hsi, A.S. Kumar, Biocompatibility and mechanical properties evaluation of Ti-6Al-4V lattice structures with varying porosities, Key Eng. Mater. 6576, 21–29 (2022) [Google Scholar]
- I. Sumirat, S. Shimamura, Model calculation of the pore-size and porosity dependences of bulk moduli in nanoporous materials, J. Porous Mater. 19, 1009–1014 (2012) [CrossRef] [Google Scholar]
- L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T.G. Gaweł, A. Achtelik-Franczak, Selective laser sintering and melting of pristine titanium and titanium Ti6Ai4V alloy powders and selection of chemical environment for etching of such materials, J. Eng. 60, 3, 2039–2046 (2015) [Google Scholar]
- S. Limmahakhun, A. Oloyede, N. Chantarapanich, P. Jiamwatthanachai, K. Sitthiseripratip, Y. Xiao, C. Yan, Alternative designs of load-sharing cobalt chromium graded femoral stems, Mater. Today Commun. 12, 1–10 (2017) [CrossRef] [Google Scholar]
- Y. Haibiao, L. Piao, Micropore-propagation-based model of fatigue life analysis of SLM manufactured Ti-6Al-4V, Int. J. Fatigue. 167 (2023) [Google Scholar]
- I. Ashkenazi, N. Amzallag, S. Factor, M. Abadi, S. Morgan, A. Gold, Y. Warschawski, Age as a risk factor for intraoperative periprosthetic femoral fractures in cementless hip hemiarthroplasty for femoral neck fractures: a retrospective analysis, J. Clin. Orthop. Surg. 16, 41–48 (2024) [CrossRef] [Google Scholar]
- K. Pankaj, P. Mahesh, J.N. Kumar, G. Sharad, Bio-tribological characteristics of 3D-printed Ti-Ta-Nb-Mo-Zr high entropy alloy in human body emulating biofluids for implant applications, J. Bio- and Tribo-Corros. 9, 1 (2022) [Google Scholar]
- S.M. Yi, X. Bingang, L. Zihua, L.C. Lam, J. Chenghanzhi, Flexible corrugated triboelectric nanogenerators for efficient biomechanical energy harvesting and human motion monitoring, J. Nano Energy 106, 108033 (2023) [Google Scholar]
- S. Arabnejad, R. Burnett Johnston, J.A. Pura, B. Singh, M. Tanzer, D. Pasini, High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing, Acta Biomater. 30, 345–356 (2016) [CrossRef] [Google Scholar]
- Cheng, D.J. Cohen, A. Kahn et al., Laser sintered porous Ti-6Al-4V implants stimulate vertical bone growth, Ann Biomed Eng 45, 2025–2035 (2017) [CrossRef] [Google Scholar]
- S. Sahdev, H. Kumar, R. Butola, R.M. Singari, Evaluating the effect of process parameters on FSP of Al5083 alloy using ANSYS, ACSM 45, 113–120 (2021) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.