Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 15, 2024
Article Number 14
Number of page(s) 20
DOI https://doi.org/10.1051/smdo/2024012
Published online 13 August 2024
  1. L. Zhang, G. Qiu, Z. Chen, Structural health monitoring methods of cables in cable-stayed bridge: a review, Measurement 168, 108343 (2021) [CrossRef] [Google Scholar]
  2. A. Cunha, E. Caetano, R. Delgado, Dynamic tests on large cable-stayed bridge, J. Bridge Eng. 6, 54–62 (2001) [CrossRef] [Google Scholar]
  3. W.-X. Ren, X.-L. Peng, Y.-Q. Lin, Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge, Eng. Struct. 27, 535–548 (2005) [CrossRef] [Google Scholar]
  4. C. Yang, K. Liang, X. Zhang, X. Geng, Sensor placement algorithm for structural health monitoring with redundancy elimination model based on sub-clustering strategy, Mech. Syst. Signal Process. 124, 369–387 (2019) [CrossRef] [Google Scholar]
  5. C. Yang, Y. Xia, A novel two-step strategy of non-probabilistic multi-objective optimization for load-dependent sensor placement with interval uncertainties, Mech. Syst. Signal Process. 176, 109173 (2022) [CrossRef] [Google Scholar]
  6. L. Li, T. Ohkubo, S. Matsumoto, Vibration measurement of a steel building with viscoelastic dampers using acceleration sensors, Measurement 171, 108807 (2021) [CrossRef] [Google Scholar]
  7. P. Psimoulis, S. Pytharouli, D. Karambalis, S. Stiros, Potential of global positioning system (GPS) to measure frequencies of oscillations of engineering structures, J. Sound Vibr. 318, 606–623 (2008) [CrossRef] [Google Scholar]
  8. D.M. Siringoringo, Y. Fujino, Noncontact operational modal analysis of structural members by laser Doppler vibrometer, Comput. Aided Civil Infrastruct. Eng. 24, 249–265 (2009) [CrossRef] [Google Scholar]
  9. D. Lydon, M. Lydon, S. Taylor, J.M. Del Rincon, D. Hester, J. Brownjohn, Development and field testing of a vision-based displacement system using a low cost wireless action camera, Mech. Syst. Signal Process. 121, 343–358 (2019) [CrossRef] [Google Scholar]
  10. H. Yoon, H. Elanwar, H. Choi, M. Golparvar-Fard, B.F. Spencer Jr, Target-free approach for vision-based structural system identification using consumer-grade cameras, Struct. Control Health Monitor. 23, 1405–1416 (2016) [CrossRef] [Google Scholar]
  11. S. Yoneyama, Basic principle of digital image correlation for in-plane displacement and strain measurement, Adv. Compos. Mater. 25, 105–123 (2016) [CrossRef] [Google Scholar]
  12. W. Du, D. Lei, P. Bai, F. Zhu, Z. Huang, Dynamic measurement of stay-cable force using digital image techniques, Measurement 151, 107211 (2020) [CrossRef] [Google Scholar]
  13. F. Xiao, R. Zhao, P. Sun, Three-dimensional displacement measurement based on the combination of digital image correlation and optical flow, Appl. Opt. 55, 8207–8212 (2016) [CrossRef] [Google Scholar]
  14. Y.J. Cha, J.G. Chen, O. Büyüköztürk, Output-only computer vision based damage detection using phase-based optical flow and unscented Kalman filters, Eng. Struct. 132, 300–313 (2017) [CrossRef] [Google Scholar]
  15. G. Chen, Q. Liang, W. Zhong, X. Gao, F. Cui, Homography-based measurement of bridge vibration using UAV and DIC method, Measurement 170, 108683 (2021) [CrossRef] [Google Scholar]
  16. G. Deng, Z. Zhou, S. Shao, X. Chu, C. Jian, A novel dense full-field displacement monitoring method based on image sequences and optical flow algorithm, Appl. Sci. 10, 2018 (2020) [CrossRef] [Google Scholar]
  17. J. Zhu, Z. Lu, C. Zhang, A marker-free method for structural dynamic displacement measurement based on optical flow, Struct. Infrastruct. Eng. 18, 84–96 (2022) [CrossRef] [Google Scholar]
  18. S. Jianbo, Tomasi, Good features to track, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (1994), pp. 593–600 [CrossRef] [Google Scholar]
  19. Z. Yan, Z. Jin, S. Teng, G. Chen, D. Bassir, Measurement of bridge vibration by UAVs combined with CNN and KLT optical-flow method, Appl. Sci. 12, 5181 (2022) [CrossRef] [Google Scholar]
  20. C.-Z. Dong, O. Celik, F.N. Catbas, E.J. O'Brien, S. Taylor, Structural displacement monitoring using deep learning-based full field optical flow methods, Struct. Infrastruct. Eng. 16, 51–71 (2020) [CrossRef] [Google Scholar]
  21. Z. Yan, S. Teng, W. Luo, D. Bassir, G. Chen, Bridge modal parameter identification from UAV measurement based on empirical mode decomposition and Fourier transform, Appl. Sci. 12, 8689 (2022) [CrossRef] [Google Scholar]
  22. I.-H. Kim, H.-J. Jung, S. Yoon, J.W. Park, Dynamic response measurement and cable tension estimation using an unmanned aerial vehicle, Remote Sens. 15, 4000 (2023) [CrossRef] [Google Scholar]
  23. J.S. Myeong, B. Yu et al., Development of wall-climbing unmanned aerial vehicle system for micro-inspection of bridges, in International Conference on Robotics and Automation (ICRA) (2019), pp. 20–24 [Google Scholar]
  24. R.M. Bhatawdekar, S. Choudhury, E.T. Modmad, UAV applications on projects monitoring in mining and civil engineering, J. Mines Metals Fuels 66, 867–878 (2018) [Google Scholar]
  25. P. Biswakarma, A. Kainthola, R.M. Bhatawdekar, V. Joshi, E.T. Mohamad, Unmanned aerial vehicles technology for slope hazard assessment, monitoring, and post failure management, Landslides: Detection, Prediction and Monitoring: Technological Developments (2023), 365–381 [CrossRef] [Google Scholar]
  26. M.E.T. Bhatawdekar, R.M. Singh, Selection of Lidar technology for limestone quarry in Thailand, J. Mines Metals Fuels 65 (2017) [Google Scholar]
  27. C. Yang, W. Lu, Y. Xia, Reliability-constrained optimal attitude-vibration control for rigid-flexible coupling satellite using interval dimension-wise analysis, Reliab. Eng. Syst. Saf. 237, 109382 (2023) [CrossRef] [Google Scholar]
  28. C. Yang, W. Lu, Y. Xia, Uncertain optimal attitude control for space power satellite based on interval Riccati equation with non-probabilistic time-dependent reliability, Aerospace Sci. Technol. 139, 108406 (2023) [CrossRef] [Google Scholar]
  29. Z. Wu, G. Chen, Q. Ding, B. Yuan, X. Yang, Three-dimensional reconstruction-based vibration measurement of bridge model using UAVs, Appl. Sci. 11, 5111 (2021) [CrossRef] [Google Scholar]
  30. V. Hoskere, J.-W. Park, H. Yoon, F. Spencer Billie, Vision-based modal survey of civil infrastructure using unmanned aerial vehicles, J. Struct. Eng. 145, 04019062 (2019) [CrossRef] [Google Scholar]
  31. H.-C. Lin, Y.-C. Ye, Reviews of bearing vibration measurement using fast Fourier transform and enhanced fast Fourier transform algorithms, Adv. Mech. Eng. 11, 1687814018816751 (2019) [Google Scholar]
  32. J.A. Lazaro, R. Wessel, J. Koppenborg, G. Dudziak, I.J. Blewett, Inverse Fourier transform method for characterizing arrayed-waveguide gratings, IEEE Photonics Technol. Lett. 15, 93–95 (2003) [CrossRef] [Google Scholar]
  33. Y. Tian, C. Zhang, S. Jiang, J. Zhang, W. Duan, Noncontact cable force estimation with unmanned aerial vehicle and computer vision, Comput. Aided Civil Infrastruct. Eng. 36, 73–88 (2021) [CrossRef] [MathSciNet] [Google Scholar]
  34. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Royal Soc. London Ser. A 454, 903–995 (1971) [CrossRef] [MathSciNet] [Google Scholar]
  35. J. Chen, Y.L. Xu, R.C. Zhang, Modal parameter identification of Tsing Ma suspension bridge under Typhoon Victor: EMD-HT method, J. Wind Eng. Ind. Aerodyn. 92, 805–827 (2004) [CrossRef] [Google Scholar]
  36. W.-J. Yan, W.-X. Ren, An enhanced power spectral density transmissibility (EPSDT) approach for operational modal analysis: theoretical and experimental investigation, Eng. Struct. 102, 108–119 (2015) [CrossRef] [Google Scholar]
  37. W.-J. Yan, W.-X. Ren, Operational modal parameter identification from power spectrum density transmissibility, Comput. Aided Civil Infrastruct. Eng. 27, 202–217 (2012) [CrossRef] [Google Scholar]
  38. P. Mohanty, D.J. Rixen, Identifying mode shapes and modal frequencies by operational modal analysis in the presence of harmonic excitation, Exp. Mech. 45, 213–220 (2005) [CrossRef] [Google Scholar]
  39. Q. Sun, W. Yan, W. Ren, Operational modal analysis for bridge engineering based on power spectrum density transmissibility, China J. Highway Transport 83–90 (2020) [Google Scholar]
  40. B.H. Kim, T. Park, Estimation of cable tension force using the frequency-based system identification method, J. Sound Vibrat. 304, 660–676 (2007) [CrossRef] [Google Scholar]
  41. H. Yoon, J. Shin, B.F. Spencer Jr, Structural displacement measurement using an unmanned aerial system, Comput. Aided Civil Infrastruct. Eng. 33, 183–192 (2018) [CrossRef] [Google Scholar]
  42. C. Devriendt, P. Guillaume, The use of transmissibility measurements in output-only modal analysis, Mech. Syst. Signal Process. 21, 2689–2696 (2007) [CrossRef] [Google Scholar]
  43. G. Chen, Z. Wu, C. Gong, J. Zhang, X. Sun, DIC-based operational modal analysis of bridges, Adv. Civil Eng. 2021, 6694790 (2021) [CrossRef] [Google Scholar]
  44. Y. Wang, K. Li, Y. Chen, S. Xu, W. Shou, Research on non-contact and non-fixed cable force measurement based on smartphone, Appl. Sci. 11 (2021) [Google Scholar]
  45. W.S.J.A.S. Cleveland, LOWESS: a program for smoothing scatterplots by robust locally weighted regression, J. Am. Stat. Assoc. 35, 54–54 (1981) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.