Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 15, 2024
Article Number 12
Number of page(s) 14
DOI https://doi.org/10.1051/smdo/2024011
Published online 14 August 2024
  1. O. Sigmund, Materials with prescribed constitutive parameters: An inverse homogenization problem, Int. J. Solids Struct. 31, 2313–2329 (1994) [CrossRef] [Google Scholar]
  2. I.E. Khadiri, M. Zemzami, N.Q. Nguyen, M. Abouelmajd, N. Hmina, S. Belhouideg, Topology optimization methods for additive manufacturing: a review, Int. J. Simul. Multidisci. Des. Optim. 14, 12 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  3. P. Wei, Y. Liu, Z.Y. Li, A multi-discretization scheme for topology optimization based on the parameterized level set method, Int. J. Simul. Multidisci. Des. Optim. 11, 3 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  4. W. Jiang, H. Ma, J. Wang, J.F. Wang, M.D. Feng, S.B. Qu, Mechanical metamaterial with negative Poisson's ratio based on circular honeycomb core, Chin. Sci. Bull. 61, 1421–1427 (2016) [CrossRef] [Google Scholar]
  5. X. Li, R. Xiao, J.Z. Chen, J.Q. Li, R. Fan, J. Song, Y. Lu, Plate-based cylinder metamaterial with negative Poisson's ratio and outstanding mechanical performance, Int. J. Simul. Multidisci. Des. Optim. 66, 793–806 (2023) [MathSciNet] [Google Scholar]
  6. W.Y. Zhang, Development and application of metamaterials, Mag. Equip. Mach. 16, 67–71 (2018) [Google Scholar]
  7. K.R. Olympic, F. Gandhi, Zero Poisson's ratio cellular honeycombs for flex skins undergoing one-dimensional morphing, J. Intell. Mater. Syst. Struct. 21, 1737–1753 (2010) [CrossRef] [Google Scholar]
  8. J.N. Grima, L. Oliveri, D. Attard, B. Ellul, R. Gatt, G. Cicala, G. Recca, Hexagonal honeycombs with zero Poisson's ratios and enhanced stiffness, Adv. Eng. Mater. 12, 855–862 (2010) [CrossRef] [Google Scholar]
  9. C. Lu, Y.X. Li, E.B. Dong, J. Yang, Equivalent elastic modulus of zero Poisson's ratio honeycomb core, J. Mater. Eng. 3, 80–84 (2013) [Google Scholar]
  10. J.F. Li, X. Shen, J. Chen, Single cells' in-plane equivalent moduli analysis of zero Poisson's ratio cellular structures and their effects factor, Acta Aeronaut. Astronaut. Sin. 36, 3616–3629 (2015) [Google Scholar]
  11. D.B. Simone, L. Susanna, S. Fabrizio. AUXHEX-A Kirigami inspired zero Poisson's ratio cellular structure, Compos. Struct. 176, 433–441 (2017) [CrossRef] [Google Scholar]
  12. X.B. Gong, J. Huang, F. Scarpa, Y.J. Liu, J.S. Leng, Zero Poisson's ratio cellular structure for two-dimensional morphing applications, Compos. Struct. 134, 384–392 (2015) [CrossRef] [Google Scholar]
  13. W.J. Cheng, L. Zhou, P. Zhang, T. Qiu, Design and analysis of a zero Poisson's ratio mixed cruciform honeycomb and its application in flexible skin, Acta Aeronaut. Astronaut. Sin. 36, 680–690 (2015) [Google Scholar]
  14. Y.F. Chang, H. Wang, Q.X. Dong, Machine learning-based inverse design of auxetic metamaterial with zero Poisson's ratio, Mater. Today Commun. 30, 103186 (2022) [CrossRef] [Google Scholar]
  15. R. Hamzehei, A. Serjouei, N. Wu, A. Zolfagharian, M. Bodaghi, 4D metamaterials with zero Poisson's ratio, shape recovery, and energy absorption features, Adv. Eng. Mater. 24, 2270037 (2022) [CrossRef] [Google Scholar]
  16. X. Chen, M.H. Fu, W.H. Li, V.S. Sheshenin, An unusual 3D metamaterial with zero Poisson's ratio in partial directions, Adv. Eng. Mater. 23, 2001491 (2021) [CrossRef] [Google Scholar]
  17. V. Gaal, V. Rodrigues, O.S. Dantas, S.D. Galvão, F.A. Fonseca, New zero Poisson's ratio structures, Phys. Status Solidi RRL 14, 1900564 (2020) [CrossRef] [Google Scholar]
  18. A. Clausen, F.W. Wang, J.S. Jensen, O. Sigmund, J.A. Lewis, Topology optimized architectures with programmable Poisson's ratio over large deformations, Adv. Mater. 27, 5523–5527 (2015) [CrossRef] [Google Scholar]
  19. D.Q. Yang, S. Zhong, Functional element topology optimization method based on multiple evaluation points for metamaterial design with zero Poisson's ratio, Acta Mater. Compositae Sin. 37, 3229–3241 (2020) [Google Scholar]
  20. M.P. Bendsøe, O. Sigmund, Material interpolation schemes in topology optimization. Arch Appl Mech. 69, 635–654 (1999). [CrossRef] [Google Scholar]
  21. Y. Zhang, Y.X. Du, D.X. Du, Q.H. Tian, Topology optimization for material microstructures with extreme elastic properties, J. China Three Gorges Univ., Nat. Sci. 38, 71–74 (2016) [Google Scholar]
  22. Y.X. Du, R. Li, M. Xu, Q.H. Tian, X.M. Zhou, Topology optimization design for negative Poisson's ratio microstructure, J. Eng. Des. 25, 450–456 (2018) [Google Scholar]
  23. L. Xia, P. Breitkopf, Design of materials using topology optimization and energy-based homogenization approach in Matlab, Struct. Multidiscipl Optim. 52, 1229–1241 (2015) [CrossRef] [Google Scholar]
  24. J. Huang, Q.H. Zhang, F. Scarpa, Y.J. Liu, J.S. Leng, Multi-stiffness topology optimization of zero Poisson's ratio cellular structures, Composites Part B 140, 35–43 (2018) [CrossRef] [Google Scholar]
  25. W. Wang, Design and application of zero Poisson's ratio honeycomb structure, Dalian University of Technology (2019) [Google Scholar]
  26. Y. Chen, L. Ye, X. Han, Experimental and numerical investigation of zero Poisson's ratio structures achieved by topological design and 3D printing of SCF/PA, Compos. Struct. 293, 115717 (2022) [CrossRef] [Google Scholar]
  27. M.P. Bendsøe, O. Sigmund, Topology Optimization: Theory, Method and Applications. Springer (2003) [Google Scholar]
  28. X.P. Li, C.H. Qin, P. Wei, C. Su, A boundary density evolutionary topology optimization of continuum structures with smooth boundaries, Int. J. Numer. Meth. Eng. 123, 158–179 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.