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Abstract.Mechanical metamaterials are materials that possess unconventional mechanical properties that are
not found in homogeneousmaterials, achieved through specific artificial microstructures. Topology optimization
is an effective design method for such materials. In this paper, a topology optimization-based method for
designing zero Poisson’s ratio mechanical metamaterials is proposed. Firstly, a zero Poisson’s ratio topology
optimization objective function is constructed based on the energy homogenization method, and the optimal
microstructure topology configuration and elastic coefficient matrix under different initial topologies and
volume fractions are obtained through the boundary density evolution topology optimization method. To
improve the saw tooth effect of the boundaries, the node density level set method is used to smooth the
boundaries of the microstructure. Then, in finite element simulation analysis, it is demonstrated that the
proposedmethod can effectively designmicrostructures with zero Poisson’s ratio properties. It is also shown that
microstructures with expected stiffness and zero Poisson’s ratio properties can be obtained by changing the
volume fraction and selecting materials with different stiffnesses. Finally, the unit cell is periodically arranged to
form a multi-lattice metamaterial, and its zero Poisson’s ratio mechanical performance in both X and Y
directions is verified.

Keywords: Boundary density evolution / topology optimization / zero Poisson’s ratio / microstructure /
metamaterial
1 Introduction

As industrial products become more diverse, complex, and
high-performance, traditional structural design can no
longer meet the various needs of industrial products.
Topology optimization, a novel design method, has become
a common approach in the field. The theory of topology
optimization design of microstructure unit cells in
composite materials was first proposed by Sigmund in
the mid-1990s [1]. It is an effective tool for seeking the
optimal material distribution in the given design space.
With breakthroughs in computer technology and the
continuous improvement of mechanics theory, various
topology optimization methods have gradually developed
and become one of the leading design methods for super-
material structures. Based on the idea that “structure
determines performance” in materials science, super-
materials, a particular type of material, can obtain
properties that surpass those already existing in nature
tpwei@scut.edu.cn
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through macro or micro-scale structural design [2,3]. As a
new branch of research in the field of super-materials,
mechanical super-materials try to obtain unconventional
mechanical properties by employing specific artificial
microstructures, such as negative Poisson’s ratio [4,5]
and zero Poisson’s ratio materials [6]. Traditional materials
usually exhibit positive Poisson’s ratio effects, as shown in
Figure 1a, where the material contracts transversely by a
certain proportion under tension. However, for zero
Poisson’s ratio materials, as illustrated in Figure 1b, do
not shrink or expand in another direction when stretched,
making them widely researched due to their unique
properties. Aerospace and defense industries, for instance,
require the development of new materials with specific
properties.

In Figure 1, L and Lʹ denote the length of the material
before and after deformation, B and Bʹ denote the width of
the material before and after deformation, and N denotes
the axial tensile force on the material.

Olympic et al. [7] first designed a zero Poisson’s ratio
hexagonal honeycomb structure in 2010, derived the
expressions of Young’s modulus and shear modulus
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Fig. 1. The tensile deformation state of materials with positive and zero Poisson’s ratio.
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equivalent to the structure through theoretical analysis,
and analyzed the effect of honeycomb parameters on its
one-dimensional mechanical properties. Grima et al. [8]
improved the existing hexagonal honeycomb structure in
2010 by proposing a semi concave honeycomb structure,
and verified its zero Poisson’s ratio characteristics through
finite element analysis. Lu [9] and Li et al. [10] analyzed the
equivalent elastic modulus and shear modulus of the
honeycomb material proposed by Olympic et al. [7],
derived the theoretical calculation formula for the equiva-
lent elastic modulus in the plane of the zero Poisson’s ratio
honeycomb core, and compared the calculation results with
the finite element experimental results to verify the
correctness of the formula. Simone et al. [11] designed a
hybrid zero Poisson’s ratio honeycomb structure in 2017 by
alternating orthogonal hexagonal and concave hexagonal
honeycomb structures. Through compression tests, it was
found that the compressive strength of the structure is
twice that of the original structure, under the condition of
constant in-plane stiffness. Gong et al. [12] proposed a
quadrangular star-shaped zero Poisson’s ratio honeycomb
structure that can realize deformation in two orthogonal
directions. Cheng et al. [13] classified cells based on the type
of straight arms and proposed a cross shaped mixed zero
Poisson’s ratio honeycomb cell, and analyzed the mechani-
cal properties of the structure. Chang et al. [14] designed
inverse from the nature of the material, first selected the
value of Poisson’s ratio of the microstructure, and then
through the continuous optimization of the microstructure
finally obtained the microstructure with the target
Poisson’s ratio. Hamzehei et al. [15] introduced a new
4D zero Poisson’s ratio metamaterials fabricated through
the 3D printing technology, and through the experiments
of the new material and the traditional 3D folded
metamaterials were compared concerning the energy
absorption ability, which proved the mechanical properties
of the new material. Chen et al. [16] built in-plane negative
Poisson’s ratio and out-of-plane zero Poisson’s ratio 3D
structures based on 2D parallelogram honeycomb by
orthogonal splicing and verified them by using finite
element simulations and experiments. Gaal et al. [17]
constructed a new zero Poisson’s ratio structure by using
two parallel rigid rods and flexible springs connecting the
rigid rods. They discussed the possibility of extending the
model to three-dimensional structures with compression in
any direction, and also discussed the advantages and
disadvantages of these models.

From the analysis of the existing research results, it can
be seen that there are many mature research works on zero
Poisson’s ratio structural design, but most of them are
based on honeycomb structure, and there are fewer studies
combining both topology optimization and zero Poisson’s
ratio microstructural design.

Clausen et al. [18] proposed a simplified design
consisting of a set of parameter hyperellipsoids, where
the length of each hyperellipsoid is controlled by the design
point. Then, shape optimization was used to fine tune the
hyperellipsoid design. A series of honeycomb structures
with Poisson’s ratios ranging from �0.8 to 0.8 were
optimized, and experimental verification was conducted to
verify that the structure maintains a constant Poisson’s
ratio even under large deformations; However, the
drawback of this method is that it requires optimization
of specific initial shapes, which has significant limitations.
And topology optimization does not require any restric-
tions on the initial shape of the material, so it has a wider
range of applications and is more in line with practical
engineering needs. For example, Yang et al. [19] used a
multi evaluation point functional primitive topology
optimization method to design a zero Poisson’s ratio
structure. They defined two sub structures, positive and
negative Poisson’s ratios, in the same topology structure to
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achieve the design of a zero Poisson’s ratio structure. Then,
they verified the zero Poisson’s ratio effect of the structure
through simulation. The results showed that the Poisson’s
ratio of the function primitive configuration designed with
maximum flexibility was closer to zero, but the zero
Poisson’s ratio effect of a combination structure with
positive and negative Poisson’s ratios was unidirectional.

In the field of topology optimization, one of the
commonly used microstructure design methods is the
SIMP method [20], based on which previous researchers
have investigated microstructures with limiting elastic
properties [21], negative Poisson’s ratio microstructures
[22], microstructures with maximized bulk modulus and
maximized shear modulus [23], and so on. While using the
SIMP method to directly design zero Poisson’s ratio
structures, the whole optimization process will be unstable,
and additional constraints must be added or the algorithm
must be improved. Huang et al. [24] used the SIMPmethod
to take the original zero Poisson’s ratio configuration as a
prototype, divided the whole structure into two parts, the
design domain and the non-design domain, and designed a
new zero Poisson’s ratio configuration with the goal of
volume minimization and the stiffness constraints as the
condition, which improved the out-of-plane bending
flexibility of the overall structure without reducing the
transverse shear rigidity and bending stiffness, and the
shortcoming of this method is that it is necessary to specify
the initial configuration of the structure. Wang et al. [25]
used the SIMP method and added weight factors to
establish a multi stiffness topology model, and obtained a
new zero Poisson’s ratio honeycomb structure. It not only
meets the in-plane stiffness requirements for deformation,
but also gives the structure a specific load-bearing capacity,
that is, high out of plane bending stiffness. Due to the need
to consider the sensitivity of horizontal changes and
vertical load-bearing capacity, a unidirectional zero
Poisson’s ratio microstructure was designed. Based on
the homogenization method and SIMPmethod, Chen et al.
[26] designed topological box structures with positive and
negative Poisson’s ratio effects, and then combined the
positive and negative Poisson’s ratio box structures to
design a zero Poisson’s ratio microstructure. The advan-
tage of this is that it avoids the oscillation or convergence
problems caused by directly optimizing the Poisson’s ratio
to zero, and can better perform comparative research and
mechanism analysis. The disadvantage is that the zero
Poisson’s ratio structure cannot be designed directly, and
due to this special design method, the zero Poisson’s ratio
effect of the designed zero Poisson’s ratio structure is also
unidirectional.

In summary, research combining topology optimization
with zero Poisson’s ratio microstructure design is limited.
Direct design of zero Poisson’s ratio structures requires
further constraints or improved algorithms, including
previous studies using multi-valued point function primi-
tive topology optimization methods to design zero
Poisson’s ratio structures composed of positive and
negative Poisson’s ratio cell walls; Alternatively, the SIMP
method can be used to design zero Poisson’s ratio
structures with new mechanical properties on the original
zero Poisson’s ratio configuration; And using weight factors
to establish a multi-stiffness topology model for designing
zero Poisson’s ratio honeycomb structures; Alternatively,
it is possible to design positive and negative Poisson’s ratio
box structures, and then design a zero Poisson’s ratio
microstructure by combining the positive and negative
Poisson’s ratio box structures. However, there are still
some limitations, such as high dependence on the initial
design and unidirectional deformation of the structure.

In this paper, a zero Poisson’s ratio topology optimi-
zation objective function was constructed based on the
energy homogenization method. By using the boundary
density evolution topology optimization method, micro-
structures with zero Poisson’s ratio properties under
different initial topologies and different volume fraction
conditions are obtained. Finite element analysis was used
to verify that the method proposed in this paper can
effectively design microstructures with bidirectional zero
Poisson’s ratio properties.

The section arrangement of this article is as follows: In
Section 2, a theoretical model for topology optimization of
zero Poisson’s ratio microstructures is proposed based on
the energy homogenization method and boundary density
evolution method. Section 3 presents numerical examples
of topology optimization of zero Poisson’s ratio micro-
structures under different initial design domains and
different volume fractions. In Section 4, finite element
simulation analysis is conducted on the examples, indicat-
ing that the method proposed in this paper can effectively
design microstructures with expected stiffness and zero
Poisson’s ratio properties.
2 Topology optimization model for zero
Poisson’s ratio microstructures

2.1 Material interpolation model

In the topology optimization method based on element
density, the element density is generally used as the design
variable. At this time, the density corresponding to the
material element is xe, and Young’s modulus of the element
is usually defined by interpolation. In this paper, the same
material interpolation model as the SIMP method [20] is
used, and the elastic modulus of the element is expressed as:

Ee xeð Þ ¼ Emin þ xp
e E0 � Eminð Þ; ð1Þ

where E0 is Young’s modulus of the material, Emin is a very
small Young’s modulus assigned to the void region to
prevent singularity of the element stiffness matrix, and p is
the penalty factor used to improve the stability of the
algorithm.
2.2 Periodic boundary conditions

Due to the periodic arrangement of microstructures, it is
necessary to ensure the stress and displacement continuity
of the microstructure unit cell boundary. Under the
assumption of periodicity and given strain e0ij,
the displacement field of the basic unit can be written as
the sum of the macroscopic displacement field and the



Fig. 2. Diagram of the idea of the homogenization method.
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periodic fluctuation field u�
i :

ui ¼ e0ijyj þ u�
i : ð2Þ

However, in practical situations, since u�
i is unknown,

the equation cannot be directly imposed on the boundary.
This general expression needs to be transformed into
explicit boundary conditions. Xia et al. [23] proposed a
unified periodic boundary condition for microstructure
unit cells with paired and parallel boundaries based on the
small deformation assumption as follows:

ukþ
i ¼ e0ijy

kþ
i þ u�

i

uk�
i ¼ e0ijy

k�
i þ u�

i

;

(
ð3Þ

in the above equation, k+ and k− represent the positive
and negative directions along the yj direction, respectively.
Since the boundaries of the periodic microstructure unit
cell are parallel, the u�

i of the two can be eliminated by
subtracting them as follows:

ukþ
i � uk�

i ¼ e0ijðykþj � yk�j Þ ¼ e0ijDy
k
j ¼ vk

i ; ð4Þ

for a periodic microstructure cell, Dykj is a constant in
equation (4). Given e0ij, the value on the right-hand side of
the equation is a constant.

2.3 Material equivalent elasticity matrix

The homogenization method can establish the connection
between the macro and micro scales and is the basis for the
optimal design of microstructures. The basic idea of the
homogenization method is given in Figure 2. It is assumed
that the macrostructure is composed of composite
materials whose equivalent properties can be calculated
by the homogenization method [23].

In Figure 2, G represents the composite elastomer, f
represents the body force, Gt represents the surface force
applied, Gu denotes a given displacement boundary
condition, x is a macroscopic variable, y is a local
microscopic variable, and the local structure at a
macroscopic point x can be viewed as consisting of a
periodic arrangement of single cells.

According to the theory of asymptotic homogenization,
the effective elastic tensor EH

ijkl of periodic materials can be
obtained as follows:

EH
ijkl ¼

1

Yj j ∫Y e0ðijÞpq � e�ðijÞpq

� �
Epqrs e0ðklÞrs � e�ðklÞrs

� �
dY ; ð5Þ

where |Y| represents the area of the design domain of the
periodic microstructure cell, e0 ijð Þ

pq is the element test strain
field under periodic boundary conditions, with two
independent vectors. e� ijð Þ

pq is the unknown periodic
fluctuation strain field generated by applying the element
test strain, which can be obtained by solving the following
homogenization equation:

∫Y e�ðijÞpq Epqrs
∂vi
∂yi

dY ¼ ∫Y e0ðijÞpq Epqrs
∂vi
∂yi

dY : ð6Þ

The energy homogenization method [24] uses the
principle of average stress and strain. By directly applying
the unit test strain to the boundary of the basic unit, eA ijð Þ

pq

corresponding to the superimposed strain field

e0 ijð Þ
pq � e� ijð Þ

pq

� �
in equation (5) can be derived, and the

equivalent elastic tensor of the material microstructure can
be rewritten as:

EH
ijkl ¼

1

Yj j ∫Y e
AðijÞ
pq EpqrseAðklÞrs dY : ð7Þ

In finite element analysis, the basic unit is discretized
into N elements, and equation (7) can be approximately
represented as:

EH
ijkl ¼

1

jY j
XN
e¼1

uA ijð Þ
e

� �T
keu

A klð Þ
e ; ð8Þ

where u
A klð Þ
e is the unit displacement solution for the

corresponding unit test strain e0 (kl), ke is the element
stiffness matrix. In the case of two-dimensional structures,
it can be noted that the subscript correspondence
relationship is 11!1, 22!2, 12!3, and equation (8) can
be expanded as:

EH ¼
EH

11 EH
12 EH

13

EH
21 EH

22 EH
23

EH
31 EH

32 EH
33

2
4

3
5 ¼

Q11 Q12 Q13
Q21

Q31

Q22 Q23

Q32 Q33

2
4

3
5; ð9Þ

where Qij is the strain energy of a single cell and can be
expressed as:

Qij ¼
1

jY j
XN
e¼1

q ijð Þ
e ; ð10Þ
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are the sums of element mutual energies q ijð Þ
e :

q
ijð Þ
e ¼ u

A ið Þ
e

� �T
keu

A jð Þ
e : ð11Þ

2.4 Zero Poisson’s ratio microstructure topology
optimization model

This article presents a topology optimization design for
materials with zero Poisson’s ratio. According to the
definition of Poisson’s ratio, it can be calculated as follows:

mH
12 ¼

EH
1122

EH
1111

;mH
21 ¼

EH
2211

EH
2222

: ð12Þ

If the above formula is directly used as the objective
function, the entire optimization process may not be stable.
Therefore, this paper proposes an equivalent expression for
zero Poisson’s ratio as follows:

c ¼ EH
1122

2 þ EH
2211

2 � 0:9Gf EH
1111 þ EH

2222

� �
; ð13Þ

where c is the objective function for optimization, andGf is
the iteration step.

During the entire optimization process, as the number
of iterations increases, the values ofEH

1122 andEH
2211 become

smaller and smaller, while the values of EH
1111 and EH

2222
become larger and larger, which makes the Poisson’s ratio
of the microstructure closer to zero. Therefore, the
mathematical model for topology optimization of zero
Poisson’s ratio microstructures can be expressed as:

min c ¼ EH
1122

2 þ EH
2211

2 � 0:9Gf EH
1111 þ EH

2222

� �
s:t:V xeð Þ � V 0

0 < xmin � xe � 1

8<
: ð14Þ

where c is the optimization objective function, EH
ijkl is the

microstructure’s equivalent elastic tensor, V(xe) is the
volume of the microstructure, V0 is the volume constraint,
and xe is the density of the element.

2.5 Sensitivity filtering and density filtering for
boundary density evolution optimization method

To ensure the existence of a reasonable solution and avoid
checkerboard patterns in topology optimization problems,
some constraints must be applied to the optimization
process. A common method is sensitivity filtering [27],
which can be expressed as follows:

∂c
∂xe

¼ 1

max g;xeð Þ
X

i∈Ne
Hei

X
i∈Ne

Heixi
∂c
∂xe

; ð15Þ

where Ne denotes the set of all elements within a straight
line distance from the center of elements e within the
filtering radius; g is a lower bound given to avoid 0 in the
denominator; andHei is a weight factor denoting the weight
that each element i occupies within the filtering radius,
defined as:

Hei ¼ max 0; rmin � D e; ið Þð Þ ; ð16Þ
where D(e,i) represents the distance between the center
points of element e and element i.

To improve the instability of the SIMP method in
optimizing zero Poisson’s ratio structures and to enhance
computational efficiency, this paper adopts the boundary
density evolution optimization method with boundary
density hierarchical filtering [28], which can perfectly solve
the problem of gray elements and converge quickly. The
specific algorithm is as follows:

a0 ¼ 0 :
1

Gf
: 1

� �
a1 ¼ findðxnew

e � a0ðloopÞÞ
xnew
e ða1Þ ¼ 0;

ð17Þ

where a0 is an intermediate parameter, Gf is the density
filter grading factor, xnew

e is the updated design variable,
loop is the number of loops, and a1 is the element number
corresponding to the design variable less than a0 (loop) in
the current loop step.

2.6 Optimal criterion algorithms

For optimization problems, such as the one presented in
equation (17), the optimal criterion algorithm is typically
chosen due to its stability and efficiency. The design
variables are updated using the strategy outlined in
reference [27]:

xnew
e ¼

max 0;xe �mð Þ if xeB
h
e � max 0;xe �mð Þ

min 1;xe þmð Þ if xeB
h
e ≥min 1;xe �mð Þ

xeB
h
e otherwise

8<
:

ð18Þ
where m is the movement limit value, h is the numerical
damping factor and Be is determined by the optimal
conditions as follows:

Be ¼ � ∂c
∂xe

=l
∂V
∂xe

; ð19Þ

where the Lagrange multiplier l must satisfy the volume
constraint condition, and its specific value can be
determined using the dichotomy algorithm.

The sensitivity of the objective function ∂c/∂ xe can be
calculated using the adjoint method [27]:

∂EH
ijkl

∂xe
¼ 1

Yj j px
p�1
e ðE0 � EminÞ uAðijÞ

e

� �T
k0u

AðijÞ
e ; ð20Þ

where k0 is the element stiffness matrix of elements with
unit Young’s modulus. The structure is uniformly meshed
into finite elements and the volume ve of each element is set



Fig. 3. Example diagram of a four-node element in two-
dimensional plane.
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to 1, therefore the sensitivity of the volume constraint to
the design variable is:

∂v
∂xe

¼ 1 : ð21Þ

2.7 Boundary smoothing

If finite element results are output directly, the boundary of
the microstructure will appear jagged, which is not
convenient for the subsequent 3D printing of metamate-
rials. It is necessary to smooth the boundary of the
microstructure. This article mainly uses element density to
convert to node density and then uses the node density
level set to display the boundary of the microstructure.
Node density can be obtained by interpolation from
element density. Taking the structure of the four elements
shown in Figure 3 as an example of a two-dimensional plane
problem, the formula for converting element density to
node element density is as follows:

D1 ¼ x1;D2 ¼ x1 þ x2ð Þ=2;D3 ¼ x2;D4 ¼ x1 þ x3ð Þ=2;D5

¼ x1 þ x2 þ x3 þ x4ð Þ=4;

D6 ¼ x2 þ x4ð Þ=2;D7 ¼ x3;D8 ¼ x3 þ x4ð Þ=2;D9 ¼ x4;

ð22Þ
where xi(i=1,2,3,4) represents the density of each element,
and Di(1,2,3,...,9) represents the density of each node.

The boundary of the microstructure can be defined by
utilizing a node density level set as follows:

Di > S; i∈V

Di ¼ S; i∈G

Di < S; i∈D V

8<
: ; ð23Þ

in which Di represents node density, V represents the solid
design domain, G represents the boundary design domain,
D\V represents the hollow design domain, and S represents
the level set value.

After using the node density level set to perform
smoothing on the microstructure, there may be some errors
between Poisson’s ratio of the microstructure models and
the original results. Therefore, it is necessary to fine-tune
the level set values of the node density to obtain a
microstructure model with a Poisson’s ratio closer to zero.
The details are shown in the example later.
3 Numerical example of zero Poisson’s ratio
microstructure design

This section focuses on the topology optimization design of
microstructures with zero Poisson’s ratio. Specific exam-
ples are given for different initial topologies and volume
fractions, and the influence of different initial topologies
and volume fractions on the designed microstructures with
zero Poisson’s ratio is discussed.
3.1 Zero Poisson’s ratio microstructure designs in
different initial design domains

Assuming a material volume fraction of 0.5 and Young’s
modulus of 1 and Poisson’s ratio of 0.3 for the solid
material, and using a finite element mesh of 100� 100, the
microstructure is topologically optimized. Table 1 shows
the optimization results for three different initial design
domains.

It is easy to see from Table 1 that the initial design
domain of the material has a certain influence on the
topological structure of the final optimized structure. In the
actual optimization process, there are many different local
optimal solutions due to topological optimization, and
there are also many possible results for the topological
optimization of the microstructure. However, the resulting
Poisson’s ratio is close to zero in all cases.

Figure 4 shows the iteration optimization curves of
Poisson’s ratio for microstructures with different initial
design domains. It can be seen from the figure that
Poisson’s ratio iteration curves of the microstructures
corresponding to different initial design domains are
different during the optimization process. However, as
the number of iterations increases, the Poisson’s ratio
finally converges to a value close to zero, and a
microstructure with zero Poisson’s ratio characteristics
is generated. It can be seen that when the iteration step
reaches about 60 steps, the Poisson’s ratio begins to remain
around 0, reflecting the stability of the algorithm.

3.2 Zero Poisson’s ratio microstructure designs with
different volume fractions

To further discuss the influence of volume fraction on the
topological optimization results, the volume fractions are
set to 0.4, 0.5, and 0.6, respectively. The optimization
results are shown in Table 2.



Table 1. The optimization results for three different initial design domains.

Fig. 4. Iteration optimization curves of Poisson’s ratio for microstructures with different initial design domains.
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It can be seen fromTable 2 that the optimization results
for different volume fractions are similar to those for
different initial design domains, that is, the topological
structures of the microstructures are different for different
volume fractions, but their Poisson’s ratio values are all
close to 0.

Figure 5 presents the iteration optimization curves of
Poisson’s ratio for microstructures with different volume
fractions. As can be observed from Figure 5, similar to
Figure 4, the Poisson’s ratio of the microstructure also
stabilizes around 0 when the iteration steps reach around
60, further indicating the stability of the algorithm.

4 Experiment simulation and analysis

To validate the zero Poisson’s ratio characteristic of the
microstructure, the designed microstructure model is
imported into ABAQUS for analysis. The element chosen
is quadrilateral, and the elastic modulus and initial
Poisson’s ratio are consistent with the conditions during
optimization. The boundary conditions are set by fixing
the horizontal displacement of the middle vertical nodes,
as well as the vertical displacement of the middle
horizontal node. Then, the top and bottom boundaries
are loaded, and the equivalent Poisson’s ratio is calculated
as the ratio of the average displacement of the left and
upper adjacent edges.

Figure 6 shows the microstructure simulation model.
4.1 Analysis of mechanical properties of zero Poisson’s
ratio microstructures with different initial design
domains

After using node density level sets to smooth the
boundaries of microstructures, there will be some errors
between the Poisson’s ratio of the microstructure model
and the original results. Therefore, this error can be
reduced by adjusting the level set values.



Table 2. Optimization results of zero Poisson’s ratio microstructures with three different volume fractions.

Fig. 5. Iteration optimization curves of Poisson’s ratio for
microstructures with different volume fractions. Fig. 6. The microstructure simulation model.
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Table 3 shows the deformation cloud maps and
corresponding equivalent Poisson’s ratios (EPR) of
microstructure simulation models with different initial
design domains before and aftermodification of the level set
values. As shown in Table 3, the number outside the
parentheses below each deformation cloud map represents
its level set value, and the number inside the parentheses
represents the volume fraction of the microstructure.

The conclusions that can be drawn from Table 3 are as
follows:

–
 If the level set values are not fine-tuned, the micro-
structure’s equivalent Poisson’s ratio is also close to 0,
but with a slightly larger error.
–
 The equivalent Poisson’s ratio of the model and the
optimized finite element results have a certain error
due to the smooth treatment of the model boundary.
Fine-tuning the level set values can reduce this error.
Table 3 shows that, upon adjusting the level set value,
the volume fraction of the optimized structure with
initial topology of four, five, and nine holes accounts for
94.2%, 94.3%, and 92.9% of the original volume,
respectively. However, the Poisson’s ratio of the
structure is only 25%, 6.3%, and 9.5% of that of the
original structure, respectively. By adjusting the level
set value of the original structure, the error due to the
boundary smoothing treatment can be reduced,
resulting in a Poisson’s ratio that is closer to the
optimization result.
–
 The deformation patterns of the microstructures with
three different initial topologies, as shown in the
deformation cloud maps, all meet the deformation
mode of zero Poisson’s ratio materials. This means that
when compressed or stretched in one direction, there is
neither stretching nor contraction in the other direc-
tion. Different initial topologies have almost no effect
on the equivalent Poisson’s ratio of the material, as
seen from their equivalent Poisson’s ratios. This



Table 3. Deformation cloud maps of microstructures with different initial design domains.
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indicates that the method proposed in this paper is
effective in designing microstructures with zero
Poisson’s ratio characteristics.

4.2 Analysis of mechanical properties of zero Poisson’s
ratio microstructures with different volume fractions

The preceding section discussed how different initial design
domains affect the microstructural characteristics of zero
Poisson’s ratio in a design. This section focuses on the
effects of varying volume fractions on the mechanical
properties of microstructures with zero Poisson’s ratio.
Table 4 displays the deformation cloud maps and
equivalent Poisson’s ratios of microstructures with differ-
ent volume fractions, before and after modifying the level
set values. The number outside the parentheses below each
deformation cloud map represents its level set value, while
the number inside the parentheses represents the volume
fraction of the microstructure. From Table 4, it is evident
that the mechanical properties of microstructures under
different volume fractions still conform to the zero
Poisson’s ratio requirement. Similar to the case of different
initial design domains, varying volume fractions have little
impact on the zero Poisson’s ratio of the microstructure,
which remains close to zero. Moreover, fine-tuning the level
set values can reduce errors caused by boundary smoothing
processing.

The conclusions that can be drawn from Table 4 are as
follows:

–
 Table 4 shows that the mechanical properties of
microstructureswithdifferentvolumefractions still satisfy
zero Poisson’s ratio performance. Similar to the case of
different initial design domains, the different volume
fractions have almost no effect on the zero Poisson’s ratio
performanceof themicrostructures,whichremainsclose to
zero. By adjusting the level set values, the structures with
volume fractions of 0.4, 0.5, and 0.6 were fine-tuned to
93.6%, 94.3%, and 91.3% of the original volume fractions,
respectively. The Poisson’s ratios were also adjusted to
4.2%, 6.3%, and 38.1%of the original values. Similar to the
results in Table 3, demonstrating that adjusting the level
set values effectively reduces the error caused byboundary
smoothing treatment.This leads toaPoisson’s ratio that is
closer to the optimized value.



Table 4. Deformation cloud maps of microstructures with different volume fractions.
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–
 From the viewpoint of the deformation mechanism, most
of the traditional zero Poisson ratio honeycomb struc-
tures are only unidirectional zero Poisson’s ratio effect,
and their deformation mechanism is to form the zero
Poisson’s ratio effect through the deformation rotation of
the rods inside the structure. The microstructured
metamaterials with bi-directional zero Poisson’s ratio
effect obtained by the optimization of the method in this
paper are mainly formed by some horizontal and vertical
rods through the nodes of specific shapes, and the
characteristics of the structural composition are similar
to the structure designed by Anders Clausen et al. [18].
All of them are formed by the crossing of horizontal and
vertical rods after bending and deformation.

Table 5 presents a comparison chart of microstructure
deformation before and after.

As can be seen from Table 5, when the pressure is
applied to the vertical direction, some locally curved places
of the original structural rods will be changed from the
original curve to the shape close to a straight line because of
the force, and some nodes will produce a certain degree of
rotation, and the combined effect of both cancels out the
deformation of the structure originally to be outwardly
extended, so in the deformation of the force, it is mainly the
rods and the nodes that bear most of the deformation, so
that the structure has a zero Poisson’s ratio effect and
the color of the deformation cloud graph shows that the
vertical rod bears most of the loads throughout the
stressing process, so this paper’s microstructures have a
large stiffness at the same time as they have a zero
Poisson’s ratio effect.

To investigate the effect of volume fraction on the
stiffness of the microstructure, further analysis was carried
out on the stress and deformation of the microstructure.
The change in stiffness was measured using equivalent
stiffness, which is equal to the ratio of vertical load to
vertical displacement. Figure 7 shows the equivalent
stiffness of microstructures with different volume fractions
before and after adjusting the level set values. The blue
part represents the equivalent stiffness of the microstruc-
ture before the level set values are modified, and the yellow
part represents the equivalent stiffness after modification.



Table 5. Comparison of microstructure before and after deformation.

Fig. 7. Equivalent stiffness maps of microstructures in Table 4 with different volume fractions before and after modification of the
level set values.

X. Li et al.: Int. J. Simul. Multidisci. Des. Optim. 15, 12 (2024) 11
As can be seen in Figure 7, the stiffness of the
microstructure decreases with decreasing volume fraction.
However, after the modification of the level set value, the
stiffness of the structure changes but its zero Poisson’s ratio
property remains stable. Therefore, by choosing the
appropriate volume fraction of the material and adjusting
the level set value, zero Poisson’s ratio metamaterials with
desired stiffness can be designed.

4.3 Mechanical performance analysis of zero Poisson’s
ratio metamaterials

To demonstrate that the multicellular structure obtained
through the method proposed in this paper also has zero
Poisson’s ratio characteristics, single cells are arranged and
combined to formmulticellular metamaterials. Then, finite
element analysis is used to analyze it in both the X and Y
directions. Due to the symmetric constraints on the
structure, the structural constraints remain unchanged,
and the load changes from vertical to horizontal. Tables 6
and 7 show the microstructural deformation cloud maps
and equivalent Poisson’s ratios of single-cell and multicel-
lular structures with volume fractions of 0.4 and 0.5 under
compression in the Y and X directions, respectively.

According to Table 6, it is evident that the equivalent
Poisson’s ratio of the structure increases to some extent as
the single cell is converted to a multi-cell structure. The
increase in Poisson’s ratio is due to the change in the



Table 6. Deformation maps and Poisson’s ratios of single-cell and multi-lattice structures with zero Poisson’s ratio at
different volume fractions in the X direction.

Table 7. Deformation maps and Poisson’s ratios of single cell and multi-lattice structures with zero Poisson’s ratio for
different volume fractions in the Y direction.
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structure size and the number of finite element cells when
converting from a unicellular structure to a multicellular
structure, which leads to a certain amount of error.
Nevertheless, the overall Poisson’s ratio of the structure
remains close to zero.

Table 7 shows that periodic microstructures with zero
Poisson’s ratio can be combined to form metamaterials
with zero Poisson’s ratio properties in both directions. The
slightly different results in both directions are because the
whole model has a slight error in the optimization process
and is not ideally perfectly symmetric.
5 Conclusion

This paper proposes a topology optimization objective
function for zero Poisson’s ratio, and obtains micro-
structures with zero Poisson’s ratio performance under
different initial topologies and volume fraction conditions
through the boundary density evolution topology opti-
mization method. Due to the existence of errors between
the microstructure model after boundary smoothing and
the initial optimization result, a more reasonable
microstructure model can be obtained by fine-tuning
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the node density level set value to reduce this error.
Mechanical performance analyses of microstructure
models under different conditions show that the initial
design domain and volume fraction have almost no effect
on the zero Poisson’s ratio performance of the microstruc-
ture. The proposed method can effectively design micro-
structures with stable zero Poisson’s ratio performance.
Meanwhile, the examples also show that by selecting
appropriate volume fractions and materials, microstruc-
tures with expected stiffness and zero Poisson’s ratio
performance can be designed. When the microstructure
unit cell is combined into a multi-cell metamaterial
through periodic arrangement, the overall Poisson’s ratio
of the entire structure still tends to zero, indicating that
the proposed method can effectively design 2D metama-
terials with bi-directional zero Poisson’s ratio perfor-
mance. Subsequently, the topology optimization design of
3D zero Poisson’s ratio metamaterials will be further
studied.
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