Open Access
Issue |
Int. J. Simul. Multidisci. Des. Optim.
Volume 14, 2023
|
|
---|---|---|
Article Number | 19 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.1051/smdo/2023021 | |
Published online | 14 December 2023 |
- A. Yadav, A. Bangar, R. Sharma, D. Pal, Optimization of turning process parameters for their effect on En 8 material work piece hardness by using Taguchi parametric optimization method, Int. J. Mech. Ind. Eng. (IJMIE) 1, 17–33 (2015), ISSN No 2231–6477 [Google Scholar]
- S. Shivade, S. Bhagat, S. Jagdale, A. Nikam, P. Londhe, Optimization of machining parameters for turning using Taguchi approach, Int. J. Recent Technol. Eng. (IJRTE) 3:1, 145–149 (2014) ISSN: 2277–3878 [Google Scholar]
- R.R. Deshpande, R. Pant, Optimization of process parameters for CNC turning using Taguchi methods for en-8 alloy steel with coated/uncoated tool inserts, Int. Res. J. Eng. Technol. 04, 180–188 (2017) [Google Scholar]
- S.V. Alagarsamy, P. Raveendran, S. Arockia Vincent Sagayaraj, S. Tamil Vendan, Optimization of machining parameters for turning of aluminium alloys 7075 using Taguchi method, Int. Res. J. Eng. Technol. 6, 22–38 (2016) [Google Scholar]
- S. Lakshmanan, M. Pradeep Kumar, M. Dhananchezian, N. Yuvaraj, Investigation of monolayer coated WC inserts on turning Ti-alloy, 35:7, 826–835, DOI: 10.1080/10426914.2020.1711930 [Google Scholar]
- E.-O. Ezugwu, Z.-M. Wang, Titanium alloys and their machinability-a review, J. Mater. Process. Technol. 68, 262–274 (1997) [CrossRef] [Google Scholar]
- Y. Xiaoping, L.-C. Richard, Machining titanium and its alloys, Int. J. Mach. Sci. Technol. 3, (1999) [Google Scholar]
- C. Kainz, N. Schalk, M. Tkadletz, C. Mitterer, C. Christoph, Microstructure and mechanical properties of CVD TiN/TiBN multilayer coatings, Surf. Coat. Technol. 370, 311–319 (2019) [CrossRef] [Google Scholar]
- S. Alborz, D. Vimal, S.-T. Newman, Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti-6Al-4V titanium alloy, J. Manuf. Processes. 21, 172–179 (2016) [CrossRef] [Google Scholar]
- K. Emel, Nose radius and cutting speed effects during milling of AISI 304 material, Mater. Manuf. Processes. 32, 185–192 (2017) [CrossRef] [Google Scholar]
- A. Fernández-Valdivielso, L.N. López De Lacalle, G. Urbikain, A. Rodriguez, Detecting the key geometrical features and grades of carbide inserts for the turning of nickel-based alloys concerning surface integrity, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 230, 3725–3742 (2016) [CrossRef] [Google Scholar]
- A. Gandarias, L.N.L. de Lacalle, X. Aizpitarte, A. Lamikiz, Study of the performance of the turning and drilling of austenitic stainless steels using two coolant techniques, Int. J. Mach. Mach. Mater. 3, 1–17 (2008) [Google Scholar]
- O. Pereira, A. Rodríguez, A. Fernández-Valdivielso, J. Barreiro, A.I. Fernández-Abia, L.N. López-De-Lacalle, Cryogenic hard turning of ASP23 steel using carbon dioxide, Proc. Eng. 132, 486–491 (2015) [Google Scholar]
- R. Polvorosa, A. Suárez, L.N.L. de Lacalle, I. Cerrillo, A. Wretland, F. Veiga, Tool wear on nickel alloys with different coolant pressures: comparison of alloy 718 and Waspaloy, J. Manuf. Process. 26, 44–56 (2017) [CrossRef] [Google Scholar]
- F.J. Amigo, G. Urbikain, L.N. López de Lacalle, O. Pereira, P. Fernández-Lucio, A. Fernández-Valdivielso, Prediction of cutting forces including tool wear in high-feed turning of Nimonic® C-263 superalloy: a geometric distortion-based model, Measurement 211, 112580 (2017) [Google Scholar]
- X. Zhang, T. Yu, P. Xu, J. Zhao, In-process stochastic tool wear identification and its application to the improved cutting force modeling of micro milling, Mech. Syst. Signal Process. 164, 108233 (2022) [CrossRef] [Google Scholar]
- V. Sivalingam, J. Sun, S.K. Mahalingam, L. Nagarajan, Y. Natarajan, S. Salunkhe, E.A. Nasr, J. PauloDavim, H.M.A.M. Hussein, Optimization of process parameters for turning Hastelloy X under different machining environments using evolutionary algorithms: a comparative study, Appl. Sci. 11, 9725 (2021) [CrossRef] [Google Scholar]
- J.D.J. Dhilip, J. Jeevan, D. Arulkirubakaran, M. Ramesh, Investigation and optimization of parameters for hard turning of OHNS steel, Mater. Manuf. Processes. 35, 1113–1119 (2020) [CrossRef] [Google Scholar]
- R. Rana, L. Krishnaia, Q. Murtaza, R.S. Walia, Optimizing the machining performance of CNC tools inserts coated with diamond like carbon coatings under the dry cutting environment, J. Eng. Res. - ICARI Special Issue, 4, 142–152 (2021). https://doi.org/10.36909/jer.ICARI.15327 [Google Scholar]
- A. Das, S.R. Das, J.P. Panda, A. Dey, K.K. Gajrani, N. Somani, N. Gupta, Machine learning based modelling and optimization in hard turning of AISI D6 steel with newly developed AlTiSiN coated carbide tool, Comp. Sci. 15, 43–54 (2022). https://doi.org/10.48550/arXiv.2202.00596 [Google Scholar]
- A.S. Sobh, E.M. Sayed, A.F. Barakat, R.N. Elshaerr, Turning parameters optimization for TC21 Ti-alloy using Taguchi technique, J. Basic Appl. Sci. 12, 1–25 (2023) [Google Scholar]
- D. Vukelic, M. Prica, V. Ivanov, G. Jovicic, I. Budak, O. Luzanin, Optimization of surface roughness based on turning parameters and insert geometry, Int. J. Simul. Model 21, 417–428 (2022) [CrossRef] [Google Scholar]
- P. Kamble, S. Kulkarni, S. Marathe, U. Kamble, S.B. Barve, H. Mech Dept, Review of tool life optimization methods and their effectiveness for turning inserts, Int. J. Res. Eng. Appl. Manag. 5, 85–88 (2019). https://doi.org/10.35291/2454-9150.2020.0114 [Google Scholar]
- E. Nas, N.A. Özbek, Optimization of the machining parameters in turning of hardened hot work tool steel using cryogenically treated tools, Surf. Rev. Lett. 27:5, 26–42 (2020). https://doi.org/10.1142/S0218625×19501774 [Google Scholar]
- S.H. Tomadi, N.F.H.A. Halim, A.N. Dahnel, A.S. Rosman, G. Umma Sankar, L.J. Eng, Optimization study on width of cut and cutting-edge radius during side milling of DAC 55 steel, Lect. Notes Mech. Eng. 33, 214–216 (2022) [CrossRef] [Google Scholar]
- M. Akgün, F. Kara, Analysis and optimization of cutting tool coating effects on surface roughness and cutting forces on turning of AA 6061 alloy, Adv. Mater. Sci Eng. 2021, 1–12 (2021) [CrossRef] [Google Scholar]
- Turning studies of AISI 1018 steel using multi objective optimization. International Conference on Computational Intelligence for Smart Power System and Sustainable Energy, CISPSSE 5, 29–32 (2020). https://doi.org/10.1109/CISPSSE49931.2020.9212247 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.