Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 14, 2023
Article Number 20
Number of page(s) 17
Published online 19 December 2023
  1. M. Siva Kumar, D. Rajamani, E. Abouel Nasr, E. Balasubramanian, H. Mohamed, A. Astarita, A hybrid approach of anfisartificial bee colony algorithm for intelligent modeling and optimization of plasma arc cutting on monelâ 400 alloy, Materials 14, 6373 (2021) [CrossRef] [Google Scholar]
  2. K. Salonitisa, S. Vatousianos, in 45th CIRP Conference on Manufacturing Systems 2012 (Elsevier, 2012), pp. 287–292 [Google Scholar]
  3. P. Patel, S. Soni, N. Kotkunde, N. Khanna, Study the effect of process parameters in plasma arc cutting on quard-400 material using analysis of variance, Mater. Today: Proc. 5, 6023–6029 (2018) [CrossRef] [Google Scholar]
  4. M. Gostimirović, D. Rodić, M. Sekulić, A. Aleksić, An experimental analysis of cutting quality in plasma arc machining, Adv. Technol. Mater. 45, 1–8 (2020) [Google Scholar]
  5. D. Rajamani, K. Ananthakumar, E. Balasubramanian, J. Paulo Davim, Experimental investigation and optimization of pac parameters on monel 400 superalloy, Mater. Manuf. Process. 33, 1864–1873 (2018) [CrossRef] [Google Scholar]
  6. M.R.C. Bidajwala, M.M.A. Trivedi, M.H.M. Gajera, M.T.S. Raol, Parametric optimization on plasma arc cutting machine for aisi 1018, Scientific Journal of Impact Factor (SJIF) 3 (2015) [Google Scholar]
  7. S.R. Mangaraj, D.K. Bagal, N. Parhi, S.N. Panda, A. Barua, S. Jeet, Experimental study of a portable plasma arc cutting system using hybrid rsm-nature inspired optimization technique, Mater. Today: Proc. 50, 867–878 (2022) [CrossRef] [Google Scholar]
  8. S. Mittal, M. Mahajan, Multi-response parameter optimization of cnc plasma arc machining using Taguchi methodology, J. Ind. Eng. 11, (2018) [Google Scholar]
  9. K.R.P. Pallavi H. Agarwal, Optimizing plasma arc cutting parameters for structural steel using grey relational analysis, Int. J. Eng. Res. Technol. 8, (2019) [Google Scholar]
  10. S. Sharma, M.K. Gupta, R. Kumar, N. Bindra, Experimental analysis and optimization of process parameters in plasma arc cutting machine of en-45a material using Taguchi and Anova method, Int. J. Mech. Aerospace Ind. Mechatron. Manuf. Eng. 11, 1387–1391 (2017) [Google Scholar]
  11. D.B. Ghane, Optimization of design parameters and nozzle wear on cnc plasma machine by experimentation, Int. Res. J. Eng. Technol. (IRJET) 6, (2019) [Google Scholar]
  12. E. Agbonoga, O. Adedipe, U. Okoro, F. Usman, O. Kafayat, S. Lawal, Effect of process parameters on the surface roughness and kerf width of mild steel during plasma arc cutting using response surface methodology, FUOYE J. Eng. Technol. 5, (2020). [CrossRef] [Google Scholar]
  13. G. Singh, S. Akhai, Experimental study and optimization of mrr in cnc plasma arc cutting, J. Eng. Res. Appl. 5, (2015) [Google Scholar]
  14. P. Pittayachaval, Y. Aupkaew, S. Sakhonkhan, T. Sukan, C. Patchaikhonang, Investigating plasma-nozzle wear based on processing time and current ampere, Mater. Sci. Forum 987, 171–176 (2020) [CrossRef] [Google Scholar]
  15. H. Pothur, V. Reddy, R. Ganesan, Experimental investigations on process parameters of stainless steel 410 alloy by plasma arc machining process using grey relational analysis with entropy measurement, Mater. Today: Proc. 62, 559–565 (2022) [CrossRef] [Google Scholar]
  16. A. Belhocine, D. Shinde, R. Patil, Thermomechanical coupled analysis-based design of ventilated brake disc using genetic algorithm and particle swarm optimization, JMST Adv. (2021). [Google Scholar]
  17. H. Patel, H. Gohil, N. Vasawala, J. Patel, Experiment and analyse material removal rate in plasma arc cutting of ss410 for various parameters using Anova, Int. J. Adv. Eng. Manag. 5(2), 179–187 (2023) [Google Scholar]
  18. T.K. Gupta, K. Raza, Optimization of ann architecture: a review on nature-inspired techniques, Mach. Learn. Bio-Signal Anal. Diag. Imaging (2019) [Google Scholar]
  19. A. Equbal, M. Shamim, I.A. Badruddin, M.I. Equbal, A.K. Sood, N.N. Nik Ghazali, Z.A. Khan, Application of the combined ann and ga for multi-response optimization of cutting parameters for the turning of glass fiber-reinforced polymer composites, Mathematics 8, (2020) [Google Scholar]
  20. J. Carr, An introduction to genetic algorithms (2014). [Google Scholar]
  21. J. Roberts, A. Cassula, J. Silveira, P. Prado, J. Freire, Gatoolbox: a matlab-based genetic algorithm toolbox for function optimization, in: The 12th Latin-American Congress on Electricity Generation and Transmission – Clagtee, 2017 [Google Scholar]
  22. M.A. Linger, T.M. Bogale, Parameters optimization of tungsten inert gas welding process on 304l stainless steel using grey based Taguchi method, Eng. Res. Express 5, (2023) [Google Scholar]
  23. A.K. Mengistie, T.M. Bogale, Development of automatic orbital pipe mig welding system and process parameters'™ optimization of aisi 1020 mild steel pipe using hybrid artificial neural network and genetic algorithm, Int. J. Adv. Manuf. Technol. (2023). [Google Scholar]
  24. E.A. Berihun, T.M. Bogale, Parameter optimization of pet plastic preform bottles in injection molding process using grey-based Taguchi method, Adv. Mater. Sci. Eng. 2022, (2022) [Google Scholar]
  25. H. Ramakrishnan, R. Balasundaram, N.V. Ganesh, N. Karthikeyan, Experimental investigation of cut quality characteristics on ss321 using plasma arc cutting, J. Braz. Soc. Mech. Sci. Eng. 40, 1–11 (2018) [CrossRef] [Google Scholar]
  26. C. Mu, B.Z. Qiu, X.H. Liu, A new method for figuring the number of hidden layer nodes in bp algorithm, Int. J. Recent Innov. Trends Comput. Commun. 5, 101–114 (2017) [Google Scholar]
  27. F. Yang, H. Cho, H. Zhang, J. Zhang, Y. Wu, Artificial neural network (ann) based prediction and optimization of an organic rankine cycle (orc) for diesel engine waste heat recovery, Energy Convers. Manag. 164, 15–26 (2018) [CrossRef] [Google Scholar]
  28. S.H. Gökler, S. Boran, Determining optimal machine part replacement time using a hybrid ann-ga model, Sci. Iranica 29, 771–782 (2022) [Google Scholar]
  29. K.G. Sheela, S.N. Deepa, Review on methods to fix number of hidden neurons in neural networks, Math. Probl. Eng. 2013, 11 (2013) [CrossRef] [Google Scholar]
  30. S. Masoudi, M. Mirabdolahi, M. Dayyani, F. Jafarian, A. Vafadar, M.R. Dorali, Development of an intelligent model to optimize heat-affected zone, kerf, and roughness in 309 stainless steel plasma cutting by using experimental results, Mater. Manuf. Process. 34, 345–356 (2019) [CrossRef] [Google Scholar]
  31. A.E. Abere, A.A. Tsegaw, R.B. Nallamothu, Process parameters optimization of bobbin tool friction stir welding on aluminum alloy 6061-t6 using combined artificial neural network and genetic algorithm, J. Braz. Soc. Mech. Sci. Eng. 44, 566 (2022) [CrossRef] [Google Scholar]
  32. E.W. Fenta, A.A. Tsegaw, in Artificial Intelligence and Digitalization for Sustainable Development: 10th EAI International Conference, ICAST 2022, Bahir Dar, Ethiopia, November 4–6, 2022, Proceedings (Springer, 2023), pp. 13–26 [Google Scholar]
  33. V. Khezri, E. Yasari, M. Panahi, A. Khosravi, Hybrid artificial neural networkâ genetic algorithm-based technique to optimize a steady-state gas-to-liquids plant, Ind. Eng. Chem. Res. 59, 8674–8687 (2020) [CrossRef] [Google Scholar]
  34. S. Ahmad R.M. Singari, R.S. Mishra, Tri-objective constrained optimization of pulsating dc sourced magnetic abrasive finishing process parameters using artificial neural network and genetic algorithm, Mater. Manuf. Process. 36, 843–857 (2021) [CrossRef] [Google Scholar]
  35. U.M.R. Paturi, S. Cheruku, V.P.K. Pasunuri, S. Salike, N. Reddy, S. Cheruku, Machine learning and statistical approach in modeling and optimization of surface roughness in wire electrical discharge machining, Mach. Learn. Appl. 6, 100,099 (2021) [Google Scholar]
  36. A.J. Santhosh, A.D. Tura, I.T. Jiregna, W.F. Gemechu, N. Ashok, M. Ponnusamy, Optimization of cnc turning parameters using face centered ccd approach in rsm and ann-genetic algorithm for aisi 4340 alloy steel, Results Eng. 11, 100–251 (2021) [Google Scholar]
  37. D. Yang, Q. Guo, Z. Wan, Z. Zhang, X. Huang, Surface roughness prediction and optimization in the orthogonal cutting of graphite/polymer composites based on artificial neural network, Processes 9, 1858 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.