Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 12, 2021
Article Number 22
Number of page(s) 9
Published online 15 October 2021
  1. A. Marchioni, C.A. Magni, Investment decisions and sensitivity analysis: NPV-consistency of rates of return, Eur. J. Oper. Res. 268, 361–372 (2018) [CrossRef] [Google Scholar]
  2. H. Markowitz, Portfolio selection, J. Finance 7, 77–91 (1952) [Google Scholar]
  3. H.M. Fabozzi, F.J. Gupta, F. Markowitz, The legacy of modern portfolio theory, J. Invest. 11, 7–22 (2002) [CrossRef] [Google Scholar]
  4. A.T. De Almeida-filho, D. Ferreira, D.L. Silva, Financial modelling with multiple criteria decision making: A systematic literature review, J. Oper. Res. Soc. 0, 1–19 (2020) [Google Scholar]
  5. M. Brabazon, A. O'Neill, Biologically inspired algorithms for financial modelling, Springer Sci. Bus. Media. (2006) [Google Scholar]
  6. A.G. Merikas, A.A. Merika, G. Koutroubousis, Modelling the investment decision of the entrepreneur in the tanker sector: Choosing between a second-hand vessel and a newly built one, 8839 (2010), doi: 10.1080/03088830802352053 [Google Scholar]
  7. A.K.M. Sherif Mohamed, Modelling project investment decisions under uncertaintyusing possibility theory, Int. J. Proj. Manag. 19, 231–241 (2001) [CrossRef] [Google Scholar]
  8. G.E. Tiao, G.C. Box, Modeling multiple time series with applications, J. Am. Stat. Assoc. 76, 802–816 (1981) [Google Scholar]
  9. W.S. Chan, Stochastic investment modelling: a multiple time-series approach, Br. Actuar. J. 1, 545–591 (2002) [CrossRef] [Google Scholar]
  10. A.V. Rutkauskas, A. Miečinskiene, V. Stasytyte, Investment decisions modelling along sustainable development concept on financial markets, Technol. Econ. Dev. Econ. 14, 417–427 (2008) [CrossRef] [Google Scholar]
  11. N.M. Ralevi, The performance of the investment return prediction models: Theory and Evidence 44006 (September 2014), doi: 10.1109/SISY.2014.6923590 [Google Scholar]
  12. L.W. Aarssen, L. Crimi, Legacy, leisure and the ‘work hard-play hard’ hypothesis, The Open Psychology Journal, Need for structure: Adaptive and non-adaptive functions, Chinese J. Clin. Psychol. (2016) [Google Scholar]
  13. L. Seliutina, M. Egorova, K. Bulgakova, Modelling of investment processes in the sphere of social house building, in: International Conference On Innovations In Science And Education, 2017, pp. 67–72 [Google Scholar]
  14. J.M. Sarabia, F. Prieto, V. Jordá, S. Sperlich, A note on combining machine learning with statistical modeling for financial data analysis 2005, 1–14 (2020), doi: 10.3390/risks8020032 [Google Scholar]
  15. Y. Hala, M.W. Abdullah, W. Andayani, G.B. Ilyas, M. Akob, The financial behavior of investment decision making between real and financial assets sectors, J. Asian Financ. Econ. Bus 7, 635–645 (2020) [CrossRef] [Google Scholar]
  16. A.G. Yankovoy, N.V. Melnik, Modified internal rate of return of the investment project, J. Appl. Manag. Investments 1, 502–508 (2012) [Google Scholar]
  17. Z. Wang, R.T. Daigler, The performance of VIX option pricing models: Empirical evidence beyond simulation, J. Futur. Mark. (2011), doi: 10.1002/fut.20466 [Google Scholar]
  18. X. Wang, M. Zhang, J. Zhu, S. Geng, Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (ANN), Int. J. Remote Sens. (2008), doi: 10.1080/01431160701281007 [Google Scholar]
  19. Y. Hendrawan, D.F. Al Riza, Machine vision optimization using nature-inspired algorithms to model Sunagoke moss water status, Int. J. Adv. Sci. Eng. Inf. Technol. 6, 45–57 (2016) [CrossRef] [Google Scholar]
  20. I. Bavarsad Salehpoor, S. Molla-Alizadeh-Zavardehi, A constrained portfolio selection model at considering risk-adjusted measure by using hybrid meta-heuristic algorithms, Appl. Soft Comput. J. (2019), doi: 10.1016/j.asoc.2018.11.011 [Google Scholar]
  21. M.L. Erana-Diaz, M.A. Cruz-Chavez, R. Rivera-Lopez, B. Martinez-Bahena, E.Y. Avila-Melgar, M. Heriberto Cruz-Rosales, Optimization for risk decision-making through simulated annealing, IEEE Access 8, 117063–117079 (2020) [CrossRef] [Google Scholar]
  22. M.Y.A. Christian, S. Victor, Comparison between the probability distribution of returns in the Heston model and empirical data for stock indexes, Phys. A Stat. Mech. Appl. 324, 303–310 (2003) [CrossRef] [Google Scholar]
  23. M. Muscettola, Probability of efficiency: Statistical implications that lead firms to achieve a minimal and sufficient ‘return-on-investment, J. Manag. Strateg. 5 (2014), doi: 10.5430/jms.v5n4p26. [Google Scholar]
  24. P. Taleski, V. Bogdanovski, Statistical analyses of the performance of Macedonian investment and pension funds, Croat. Oper. Res. Rev. 6, 387–404 (2015) [CrossRef] [Google Scholar]
  25. J. Felton, P. Jain, True returns: Adjusting stock prices for cash dividends and stock splits, May, 192–205 (2018) [Google Scholar]
  26. S. Sanni, B. O'Neill, Inventory optimisation in a three-parameter Weibull model under a prepayment system, Comput. Ind. Eng. 128, 298–304 (2019) [CrossRef] [Google Scholar]
  27. S. Rijal Muhammad Sabri, W. Mustafa Sarsour, Modelling on stock investment valuation for long-term strategy, J. Invest. Manag. 8, 60 (2019) [Google Scholar]
  28. S. Kellison, stephen-kellison-theory-of-interest-3e.pdf, 2009 [Google Scholar]
  29. P. Protter, M. Capinski, T. Zastawniak, Mathematics for Finance: An Introduction to Financial Engineering, 111 (2004) [Google Scholar]
  30. G.M. Thomas, Weibull parameter estimation using genetic algorithms and a heuristic approach to cut-set analysis, 1995, [Google Scholar]
  31. B. Abbasi, A.H. Eshragh Jahromi, J. Arkat, M. HosseinKouchack, Estimating the parameters of Weibull distribution using simulated annealing algorithm, Appl. Math. Comput. (2006), doi: 10.1016/j.amc.2006.05.063 [Google Scholar]
  32. A. Altin, A comparative study on optimization of machining parameters by turning aerospace materials according to Taguchi method, Int. J. Simul. Multidiscip. Des. Optim. (2017), doi: 10.1051/smdo/2016015 [Google Scholar]
  33. M.A. Khodja, M. Tadjine, M.S. Boucherit, M. Benzaoui, Tuning PID attitude stabilization of a quadrotor using particle swarm optimization (experimental), Int. J. Simul. Multidiscip. Des. Optim. (2017), doi: 10.1051/smdo/2017001 [Google Scholar]
  34. E.S. Maputi, R. Arora, Design optimization of a three-stage transmission using advanced optimization techniques, Int. J. Simul. Multidiscip. Des. Optim. (2019), doi: 10.1051/smdo/2019009 [Google Scholar]
  35. S. Sathasivam, M.A. Mansor, M.S.M. Kasihmuddin, H. Abubakar, Election algorithm for random k satisfiability in the hopfield neural network, Processes (2020), doi: 10.3390/pr8050568 [Google Scholar]
  36. H. Abubakar, M.L. Danrimi, Hopfield type of artificial neural network via election algorithm as heuristic search method for random boolean k satisfiability, Int. J. Comput. Digit. Syst. 10, 659–673 (2021) [CrossRef] [MathSciNet] [Google Scholar]
  37. H. Abubakar, S. Rijal, M. Sabri, S.A. Masanawa, S. Yusuf, Modified election algorithm in hopfield neural network for optimal random k satisfiability representation, Int. J. Simul. Multidisci. Des.Optim. 16, 1–13 (2020) [Google Scholar]
  38. T. Sultana, F. Muhammad, M. Aslam, Estimation of parameters for the lifetime distributions 12, 77–92 (2019) [Google Scholar]
  39. W. Wang, Y. Lu, Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in assessing rounding model (2018), doi: 10.1088/1757-899X/324/1/012049 [Google Scholar]
  40. I. Pobočíková, Z. Sedliačková, M. Michalková, Transmuted Weibull distribution and its applications, MATEC Web Conf. 157, 1–11 (2018) [Google Scholar]
  41. H. Jiang, J. Wang, J. Wu, W. Geng, Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions, Renew. Sustain. Energy Rev. (2017), doi: 10.1016/j.rser.2016.11.241 [Google Scholar]
  42. A. Bensoussan, Estimation theory, 48 (2018) [Google Scholar]
  43. K. Tashkova, J. Šilc, N. Atanasova, S. Džeroski, Parameter estimation in a nonlinear dynamic model of an aquatic ecosystem with meta-heuristic optimization, Ecol. Modell. (2012), doi: 10.1016/j.ecolmodel.2011.11.029 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.