Int. J. Simul. Multidisci. Des. Optim.
Volume 12, 2021
Computation Challenges for engineering problems
Article Number 31
Number of page(s) 8
Published online 09 November 2021
  1. K.R. Baker, Workforce allocation in cyclical scheduling problems: a survey, J. Oper. Res. Soc. 27, 155–167 (1976) [CrossRef] [Google Scholar]
  2. A.M. Turhan, B. Bilgen, A hybrid fix-and-optimize and simulated annealing approaches for nurse rostering problem, Comput. Ind. Eng. 145, 106531 (2020) [CrossRef] [Google Scholar]
  3. P. Strandmark, Y. Qu, T. Curtois, First-order linear programming in a column generation-based heuristic approach to the nurse rostering problem, Comput. Oper. Res. 120, 104945 (2020) [CrossRef] [MathSciNet] [Google Scholar]
  4. G.M. Jaradat, A. Al-Badareen, M. Ayob, M. Al-Smadi, I. Al-Marashdeh, M. Ash-Shuqran, E. Al-Odat, Hybrid elitist-ant system for nurse-rostering problem, J. King Saud Univ. Comput. Inf. Sci. 31, 378–384 (2018) [Google Scholar]
  5. R. Ramli, S.N.I. Ahmad, S. Abdul-Rahman, A. Wibowo, A tabu search approach with embedded nurse preferences for solving nurse rostering problem, Int. J. Simul. Multidiscipl. Des. Optim. 11 (2020) [Google Scholar]
  6. A. Abuhamdah, W. Boulila, G.M. Jaradat, A.M. Quteishat, M.K. Alsmadi, I.A. Almarashdeh, A novel population-based local search for nurse rostering problem, Int. J. Electr. Comput. Eng. 11, 471–480 (2020) [Google Scholar]
  7. A. Kheiri, A. Gretsista, E. Keedwell, G. Lulli, M.G. Epitropakis, E.K. Burke, A hyper-heuristic approach based upon a hidden Markov model for the multi-stage nurse rostering problem, Comput. Oper. Res. 130, 105221 (2021) [CrossRef] [Google Scholar]
  8. M.R. Hassani, J. Behnamian, A scenario-based robust optimization with a pessimistic approach for nurse rostering problem, J. Combin. Optim. 41, 143–169 (2021) [CrossRef] [Google Scholar]
  9. P.S. Chen, Z.Y. Zeng, Developing two heuristic algorithms with metaheuristic algorithms to improve solutions of optimization problems with soft and hard constraints: an application to nurse rostering problems, Appl. Soft Comput. J. 93, 106336 (2020) [CrossRef] [Google Scholar]
  10. R. Ramli, R.A. Rahman, N. Rohim, A hybrid ant colony optimization algorithm for solving a highly constrained Nurse Rostering Problem, J. Inf. Commun. Technol. 18, 305–326 (2019) [Google Scholar]
  11. V. Clarissa, S. Suyanto, New reward-based movement to improve globally-evolved BCO in nurse rostering problem, in 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) (2019) pp. 114–117 [CrossRef] [Google Scholar]
  12. J.D. Bunton, A.T. Ernst, M. Krishnamoorthy, An integer programming based ant colony optimisation method for nurse rostering, in Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017 (2017) pp. 407–414 [CrossRef] [Google Scholar]
  13. M. López-Ibáñez, T. Stützle, M. Dorigo, Ant colony optimization: a component-wise overview BT, in Handbook of Heuristics, edited by R. Martí, P. Panos, M.G.C. Resende. Springer International Publishing (2009) pp. 1– 37. [Google Scholar]
  14. J. Ast, R. van Babuska, B. De Schutter, Ant colony optimization for optimal control, in 2008 IEEE Congress on Evolutionary Computation, IEEE World Congress on Computational Intelligence, (2008) pp. 2040–2046 [Google Scholar]
  15. U. Aickelin, E.K. Burke, J. Li, An estimation of distribution algorithm with intelligent local search for rule-based nurse rostering, J. Oper. Res. Soc. 58, 1574–1585 (2007) [CrossRef] [Google Scholar]
  16. E.H. Özder, E. Özcan, T. Eren, A systematic literature review for personnel scheduling problems, Int. J. Inf. Technol. Decis. Making 19, 1695–1735 (2020) [CrossRef] [Google Scholar]
  17. Ş. Gür, T. Eren, Scheduling and planning in service systems with goal programming: literature review, in Mathematics (2018), Vol. 6. [Google Scholar]
  18. M. Pinedo, in Scheduling (Springer, 2012), Vol. 29 [CrossRef] [Google Scholar]
  19. P. De Bruecker, J. Van den Bergh, J. Beliën, E. Demeulemeester, Workforce planning incorporating skills: state of the art, Eur. J. Oper. Res. 243, 1–16 (2015) [CrossRef] [Google Scholar]
  20. C.E. Saville, P. Griffiths, J.E. Ball, T. Monks, How many nurses do we need? A review and discussion of operational research techniques applied to nurse staffing, Int. J. Nurs. Stud. 97, 7–13 (2019) [CrossRef] [Google Scholar]
  21. J.H. Kingston, Modelling history in nurse rostering, Ann. Oper. Res. (2019) [Google Scholar]
  22. E.K. Burke, P. De Causmaecker, G. Berghe Vanden, H. Van Landeghem, The state of the art of nurse rostering, J. Schedul. 7, 441–499 (2004) [CrossRef] [Google Scholar]
  23. Z. Liu, Z. Liu, Z. Zhu, Y. Shen, J. Dong, Simulated annealing for a multi-level nurse rostering problem in hemodialysis service, Appl. Soft Comput. 64, 148–160 (2018) [CrossRef] [Google Scholar]
  24. A. Wibowo, Y. Lianawati, A multi-objective genetic algorithm for optimizing the nurse scheduling problem, Int. J. Rec. Technol. Eng. 8, 5409–5414 (2019) [Google Scholar]
  25. M. Dorigo, G. Di Caro, Ant colony optimization: a new meta-heuristic, in Proceedings of the1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) (1999) pp. 1470–1477 [CrossRef] [Google Scholar]
  26. M. Dorigo, T. Stützle, The ant colony optimization metaheuristic: algorithms, applications, and advances BT, in Handbook of Metaheuristics, edited by F. Glover, G.A. Kochenberger (Springer US, 2003) pp. 250–285 [CrossRef] [Google Scholar]
  27. V. Maniezzo, L.M. Gambardella, F. de Luigi, Ant colony optimization BT, in New Optimization Techniques in Engineering, edited by G.C. Onwubolu, B.V. Babu. Springer Berlin Heidelberg (2004) pp. 101–121 [CrossRef] [Google Scholar]
  28. C. Blum, Ant colony optimization: introduction and hybridizations, in 7th International Conference on Hybrid Intelligent Systems (HIS 2007) (2008) pp. 24–29 [Google Scholar]
  29. R.F. Tavares Neto, M. Godinho Filho, Literature review regarding ant colony optimization applied to scheduling problems: guidelines for implementation and directions for future research, Eng. Appl. Artif. Intell. 26, 150–161 (2013) [CrossRef] [Google Scholar]
  30. Mirjalili, (2020). [Google Scholar]
  31. S. Katiyar Ibraheem, A.Q. Ansari, Ant Colony Optimization: A Tutorial Review Ant Colony Optimization: A Tutorial Review, Department of Electrical Engineering (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.