Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 12, 2021
Simulation and Optimization for Industry 4.0
Article Number 30
Number of page(s) 9
DOI https://doi.org/10.1051/smdo/2021031
Published online 09 November 2021
  1. M. Chaudhari, B.F. Jogi, R. Pawade, Comparative study of part characteristics built using additive manufacturing (FDM), Proc. Manufactur. 20, 73–78 (2018) [CrossRef] [Google Scholar]
  2. M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson et al., Design for additive manufacturing: trends, opportunities, considerations, and constraints, CIRP Ann. 65, 737–60 (2016) [CrossRef] [Google Scholar]
  3. J.S. Mohammed, Applications of 3D printing technologies in oceanography, Methods Oceanogr. 17, 97–117 (2016) [CrossRef] [Google Scholar]
  4. Z. Liu, Y. Wang, B. Wu, C. Cui, Y. Guo, C. Yan, A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts, Int. J. Adv. Manufactur. Technol. 102, 2877–89 (2019) [CrossRef] [Google Scholar]
  5. M. Abouelmajd, A. Bahlaoui, I. Arroub, M. Lagache, S. Belhouideg, Mechanical characterization of PLA used in manufacturing of 3D printed medical equipment for COVID-19 pandemic, 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), IEEE (2020), pp. 1–5 [Google Scholar]
  6. I. Gibson, D. Rosen, B. Stucker, M. Khorasani, Materials for Additive Manufacturing. Additive Manufacturing Technologies (Springer; 2021), pp. 379–428 [CrossRef] [Google Scholar]
  7. J. Gardan, Smart materials in additive manufacturing: state of the art and trends, Virtual Phys. Prototyp. 14, 1–18 (2019) [CrossRef] [Google Scholar]
  8. V.E. Kuznetsov, A.N. Solonin, O.D. Urzhumtsev, R. Schilling, A.G. Tavitov, Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process, Polymers 10, 313 (2018) [CrossRef] [Google Scholar]
  9. D. Bourell, J.P. Kruth, M. Leu, G. Levy, D. Rosen, A.M. Beese et al., Materials for additive manufacturing, CIRP Ann. 66, 659–81 (2017) [CrossRef] [Google Scholar]
  10. M, Van den Eynde, P. Van Puyvelde, 3D Printing of Poly (lactic acid). Industrial Applications of Poly (lactic acid) (2017), pp. 139–58 [Google Scholar]
  11. X. Zhou, S.-J. Hsieh, Y. Sun, Experimental and numerical investigation of the thermal behaviour of polylactic acid during the fused deposition process, Virtual Phys. Prototyp. 12, 221–33 (2017) [CrossRef] [Google Scholar]
  12. J.R.C. Dizon, A.H. Espera Jr, Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers, Addit. Manufactur. 20, 44–67 (2018) [CrossRef] [Google Scholar]
  13. S. Brischetto, R. Torre, Tensile and compressive behavior in the experimental tests for PLA specimens produced via fused deposition modelling technique, J. Compos. Sci. 4, 140 (2020) [CrossRef] [Google Scholar]
  14. H.K. Dave, S.R. Rajpurohit, N.H. Patadiya, S.J. Dave, K.S. Sharma, S.S. Thambad et al., Compressive strength of PLA based scaffolds: effect of layer height, infill density and print speed, Int. J. Mod. Manuf. Technol. 11, 21–27 (2019) [Google Scholar]
  15. Y. Zhao, Y. Chen, Y. Zhou, Novel mechanical models of tensile strength and elastic property of FDM AM PLA materials: experimental and theoretical analyses, Mater. Des. 181, 108089 (2019) [CrossRef] [Google Scholar]
  16. T. Yao, Z. Deng, K. Zhang, S. Li, A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations, Compos. B 163, 393–402 (2019) [CrossRef] [Google Scholar]
  17. C. Abeykoon, P. Sri-Amphorn, A. Fernando, Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures, Int. J. Lightweight Mater. Manufact. 3, 284–97 (2020) [Google Scholar]
  18. S.R. Rajpurohit, H.K. Dave, Flexural strength of fused filament fabricated (FFF) PLA parts on an open-source 3D printer, Adv. Manufactur. 6, 430–41 (2018) [CrossRef] [Google Scholar]
  19. I. Standard, ISO B. Plastics—Determination of flexural properties, ISO Geneva, Switzerland (2019) [Google Scholar]
  20. S. Kumar, R. Singh, M. Singh, T. Singh, A. Batish, Multi material 3D printing of PLA-PA6/TiO2 polymeric matrix: Flexural, wear and morphological properties, J. Thermoplast. Compos. Mater. 0892705720953193 (2020) [Google Scholar]
  21. B.A. Aloyaydi, S. Sivasankaran, H.R. Ammar, Influence of infill density on microstructure and flexural behavior of 3D printed PLA thermoplastic parts processed by fusion deposition modeling, AIMS Mater. Sci. 6, 1033–48 (2019) [CrossRef] [Google Scholar]
  22. J. Chacón, M.A. Caminero, E. García-Plaza, P.J. Núnez, Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection, Mater. Des. 124, 143–57 (2017) [CrossRef] [Google Scholar]
  23. J. Porter, T. Cain, S. Fox, P. Harvey, Influence of infill properties on flexural rigidity of 3D-printed structural members, Virtual Phys. Prototyp. 14, 148–59 (2019) [CrossRef] [Google Scholar]
  24. Z. Liu, Q. Lei, S. Xing, Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM, J. Mater. Res. Technol. 8, 3741–51 (2019) [CrossRef] [Google Scholar]
  25. S.Z. Gebrehiwot, L.E. Leal, J. Eickhoff, L. Rechenberg, The influence of stiffener geometry on flexural properties of 3D printed polylactic acid (PLA) beams, Progr. Additive Manufactur. 6, 71–81 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.