Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 12, 2021
Advances in Modeling and Optimization of Manufacturing Processes
Article Number 17
Number of page(s) 8
DOI https://doi.org/10.1051/smdo/2021020
Published online 26 August 2021
  1. H. Shakhatreh, A.H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, M. Guizani, Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges, IEEE Access 7, 48572–48634 (2019) [Google Scholar]
  2. P. Radoglou-Grammatikis, P. Sarigiannidis, T. Lagkas, I. Moscholios, A compilation of UAV applications for precision agriculture, Comput. Netw. 172, 107148 (2020) [Google Scholar]
  3. S. Park, Y. Choi, Applications of unmanned aerial vehicles in mining from exploration to reclamation: a review, Minerals 10, 663 (2020) [Google Scholar]
  4. A. Valsan, B. Parvathy, R.S. Unnikrishnan, P.K. Reddy, A. Vivek, Unmanned aerial vehicle for search and rescue mission, in 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI) (48184). IEEE (2020, June), pp. 684–687 [Google Scholar]
  5. A. Sigala, B. Langhals, Applications of Unmanned Aerial Systems (UAS): a Delphi Study projecting future UAS missions and relevant challenges, Drones 4, 8 (2021) [Google Scholar]
  6. B. Esakki, S. Mathiyazhagan, M. Moses, K.J. Rao, S. Ganesan, Development of 3D-printed floating Quadrotor for collection of algae in remote water bodies, Comput. Electr. Agric. 164, 104891 (2019) [Google Scholar]
  7. E. Balasubramanian, N.V.S.S. Sagar, U. Chandrasekhar, S. Salunkhe, Development of light weight multi-rotor UAV structures through synergistic application of design analysis and fused deposition modeling, Int. J. Mater. Product Technol. 59, 229–238 (2019) [Google Scholar]
  8. H. Klippstein, A. Diaz De Cerio Sanchez, H. Hassanin, Y. Zweiri, L. Seneviratne, Fused deposition modeling for unmanned aerial vehicles (UAVs): a review, Adv. Eng. Mater. 20, 1700552 (2018) [Google Scholar]
  9. A.W. Gebisa, H.G. Lemu, A case study on topology optimized design for additive manufacturing, in Materials Science and Engineering Conference Series (2017, December), Vol. 276, No. 1, p. 012026 [Google Scholar]
  10. G.I. Rozvany, A critical review of established methods of structural topology optimization, Struct. Multidiscipl. Optim. 37, 217–237 (2009) [Google Scholar]
  11. O. Sigmund, K. Maute, Topology optimization approaches, Struct. Multidiscipl. Optim. 48, 1031–1055 (2013) [Google Scholar]
  12. J. Liu, A.T. Gaynor, S. Chen, Z. Kang, K. Suresh, A. Takezawa, L. Cheng, Current and future trends in topology optimization for additive manufacturing, Struct. Multidiscipl. Optim. 57, 2457–2483 (2018) [Google Scholar]
  13. M.P. Bendsøe, O. Sigmund, Material interpolation schemes in topology optimization, Arch. Appl. Mech. 69, 635–654 (1999) [Google Scholar]
  14. M.Y. Wang, X. Wang, D. Guo, A level set method for structural topology optimization, Comp. Methods Appl. Mech. Eng. 192, 227–246 (2003) [Google Scholar]
  15. G. Allaire, F. Jouve, A.M. Toader, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys. 194, 363–393 (2004) [Google Scholar]
  16. J. Liu, Y. Ma, A survey of manufacturing oriented topology optimization methods, Adv. Eng. Softw. 100, 161–175 (2016) [Google Scholar]
  17. B.S. Lazarov, F. Wang, O. Sigmund, Length scale and manufacturability in density-based topology optimization, Arch. Appl. Mech. 86, 189–218 (2016) [Google Scholar]
  18. G. Allaire, F. Jouve, G. Michailidis, Thickness control in structural optimization via a level set method, Struct. Multidiscip. Optim. 53, 1349–1382 (2016) [Google Scholar]
  19. J.K. Guest, J.H. Prévost, T. Belytschko, Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Int. J. Numer. Methods Eng. 61, 238–254 (2004) [Google Scholar]
  20. J.K. Guest, Imposing maximum length scale in topology optimization, Struct. Multidiscip. Optim. 37, 463–473 (2009) [Google Scholar]
  21. X. Guo, W. Zhang, W. Zhong, Explicit feature control in structural topology optimization via level set method, Computer Methods Appl. Mech. Eng. 272, 354–378 (2014) [Google Scholar]
  22. Q. Xia, T. Shi, M.Y. Wang, S. Liu, A level set based method for the optimization of cast part, Struct. Multidiscip. Optim. 41, 735–747 (2010) [Google Scholar]
  23. J. Liu, Y.S. Ma, 3D level-set topology optimization: a machining feature-based approach, Struct. Multidiscip. Optim. 52, 563–582 (2015) [Google Scholar]
  24. G.D. Goh, S. Agarwala, G.L. Goh, V. Dikshit, S.L. Sing, W.Y. Yeong, Additive manufacturing in unmanned aerial vehicles (UAVs): challenges and potential, Aerospace Sci. Technol. 63, 140–151 (2017) [Google Scholar]
  25. S.K. Moon, Y.E. Tan, J. Hwang, Y.J. Yoon, Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures, Int. J. Precis. Eng. Manufactur. Green Technol. 1, 223–228 (2014) [Google Scholar]
  26. N.V.S.S. Sagar, K.S. Vepa, Experimental investigations for improving the strength of parts manufactured using FDM process, in Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018). Springer, Singapore (2019) pp. 307–313 [Google Scholar]
  27. N.A. Ahmed, J.R. Page, Manufacture of an unmanned aerial vehicle (UAV) for advanced project design using 3D printing technology, in Applied Mechanics and Materials, Trans Tech Publications 397, 970-980 (2013). [Google Scholar]
  28. S.H. Ahn, M. Montero, D. Odell, S. Roundy, P.K. Wright, Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyp. J. 8, 248–257 (2002) [Google Scholar]
  29. K. Chockalingam, N. Jawahar, J. Praveen, Enhancement of anisotropic strength of fused deposited ABS parts by genetic algorithm, Mater. Manufactur. Processes 31, 2001–2010 (2016) [Google Scholar]
  30. L.J. Yang, The micro-air-vehicle Golden Snitch and its figure-of-8 flapping, J. Appl. Sci. Eng. 15, 197–212 (2012) [Google Scholar]
  31. F.Y. Hsiao, L.J. Yang, S.H. Lin, C.L. Chen, J.F. Shen, Autopilots for ultra light weight robotic birds- Automatic altitude control and system integration of a sub-10 g weight flapping wing micro air vehicle, IEEE Control Syst. Mag. 32, 35–48 (2012) [Google Scholar]
  32. L.J. Yang, C.Y. Kao, C.K. Huang, Development of flapping ornithopters by precision injection molding, Appl. Mech. Mater. 163, 125–132 (2012) [Google Scholar]
  33. MATWEB. (n.d.). Retrieved from Material Property Data: http://www.matweb.com/index.aspx [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.