Issue |
Int. J. Simul. Multidisci. Des. Optim.
Volume 12, 2021
Advances in Modeling and Optimization of Manufacturing Processes
|
|
---|---|---|
Article Number | 17 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/smdo/2021020 | |
Published online | 26 August 2021 |
Research Article
Optimization of UAV structure and evaluation of vibrational and fatigue characteristics through simulation studies
1
Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chittagong, Bangladesh
2
Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
3
Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
4
Alexandria University, Alexandria Governorate, Egypt
* e-mail: esak.bala@gmail.com
Received:
28
May
2021
Accepted:
12
August
2021
Unmanned Aerial Vehicles (UAV) is generic air vehicles that are significantly developed for military and civil purposes. In recent times, advancements in the field of UAVs are exceptional and tremendous. Nevertheless, numerous researches have been performed mainly to reduce the weight of the UAV structure. The flight time and allowable payload rely on the UAV structure's weight, which is considered a significant factor. Hence, in this paper, the UAV model's static structural behavior is cultivated utilizing the morals of Finite Element Analysis (FEA) to determine the total deformation and Von-mises stress. Three different polymer materials, namely Poly Lactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), and Polyamide (PA), are chosen for FEA analysis of 3D printed UAV structure. The thrust generated from the motors varies from 2 kg to 5 kg, and an evaluation of structural strength characteristics is performed. The FEA study has shown that maximum deformation and maximum stress are obtained at the propeller casings and the basement of the structure, respectively. After comparing the details on deformation and stress from all three materials, the research also reveals that PLA is the best material for conception. Furthermore, topological optimization is performed on the UAV structure to reduce mass and minimize stress without compromising mechanical strength. The vibrational and fatigue characteristics of optimized UAV structure is examined. The unified body of the UAV frame will reduce the assembly time and make manufacturing much more effortless.
Key words: Topology optimization / additive manufacturing / FEA / modal analysis / fatigue analysis and simulation
© A.M. Rayed et al., Published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.