Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 12, 2021
Article Number 19
Number of page(s) 9
Published online 27 August 2021
  1. W. Li, X. Yang, S. Wang, J. Xiao, Q. Hou, Comprehensive analysis on the performance and material of automobile brake discs, Metals 10, 1–18 (2020) [Google Scholar]
  2. P. Filip, Friction Brakes for Automotive and Aircraft, Encyclopedia of Technology (Springer, Boston, MA, 2013) [Google Scholar]
  3. H.S. Qi, A.J. Day, Investigation of disc/pad interface temperatures in friction braking, Wear 262, 505–513 (2007) [Google Scholar]
  4. A. Borowski, Common methods in analyzing the tribological properties of brake pads and discs − a review, Acta Mech. Autom. 13, 189–199 (2019) [Google Scholar]
  5. P. Liu, H. Zheng, C. Cai, Y. Wang, C. Lu, K.H. Ang, G.R. Liu, Analysis of disc brake squeal using the complex eigenvalue method, Appl. Acoust. 68, 603–615 (2007) [Google Scholar]
  6. S. Subhasis, P.P. Rathod, A.J. Modi, Research paper on modelling and simulation of Disc brake to analyze temperature distribution using FEA, Int. J. Sci. Res. Dev. 2, 491–494 (2014) [Google Scholar]
  7. N. Idusuyi, I. Babajide, O.K. Ajayi, T.T. Olugasa, A computational study on the use of an Aluminium metal matrix composite and Aramid as alternative brake disc and brake pad material, J. Eng. 2014, 1–6 (2014) [Google Scholar]
  8. G. Ganesan, S. Magibalan, S. Gokul, K.P. Gopalakrishnan, S. Packayiraj, Design and fabrication of disc brake by using aluminum metal matrix composites, J. Emerg. Technolog. Innov. Res. 4, 77–81 (2017) [Google Scholar]
  9. M.H. Dakhil, A.K. Rai, P.R. Reddy, A.A.H. Jabbar, Design and structural analysis of disc brake in automobiles, Int. J. Mech. Product. Res. Dev. 4, 95–112 (2014) [Google Scholar]
  10. D.K. Dhir, Thermo-Mechanical performance of automotive disc brakes, Mater. Today Proc. 1, 1864–1871 (2018) [Google Scholar]
  11. A. Belhocine, M. Bouchetara, Temperature and thermal stresses of vehicles gray cast iron, J. Appl. Res. Technol. 11, 674–682 (2013) [Google Scholar]
  12. M. Nouby, J. Abdo, D. Mathivanan, K. Srinivasan, Evaluation of disc brake materials for squeal reduction, Tribol. Trans. 4, 644–656 (2011) [Google Scholar]
  13. R. Bhat, K.S. Lee, Optimization of brake parameters for a disc brake system to improve the heat dissipation using Taguchi method, Int. J. Mech. Eng. Technol. 8, 44–52 (2017) [Google Scholar]
  14. M. Vidiya, B. Singh, Experimental and numerical thermal analysis of formula student racing car disc brake design, J. Eng. Sci. Technol. Rev. 10, 138–147 (2017) [Google Scholar]
  15. M. Chopade, A. Valavade, Experimental investigation using CFD for thermal performance of ventilated disc brake rotor, Int. J. Autom. Technol. 18, 235–244 (2017) [Google Scholar]
  16. A.A. Yevtushenko, M. Kuciej, Temperature and thermal stresses in a pad/disc during braking, Appl. Therm. Eng. 30, 354–373 (2009) [Google Scholar]
  17. P. Grzes, Maximum temperature of the disc during repeated braking applications, Adv. Mech. Eng. 11, 1–13 (2019) [Google Scholar]
  18. G.L. Gigan, Improvement in the brake disc design for heavy vehicles using parametric evaluation, Proc. Inst. Mech. Eng. D 231, 1989–2004 (2017) [Google Scholar]
  19. A.A. Yevtushenko, P. Grzes, Initial selection of disc brake pads material based on the temperature mode, Materials (Basel) 13, 822 (2020) [Google Scholar]
  20. A.A. Yevtushenko, P. Grzes, Adamowicz, The temperature mode of the carbon-carbon multi-Disc brake in the view of the interrelations of its operating characteristics, Materials 13, 1–16 (2020) [Google Scholar]
  21. R.A. Garcia-Leon, E. Florez-solana, Dynamic analysis of three autoventilated disc brakes, Ingenieria e investigacion 37, 102–114 (2017) [Google Scholar]
  22. V.T. Nguyen, P. Dufrenoy, P. Coorevits, Simulation of energy dissipation and heat transfers of a braking system using the discrete element method: role of roughness and granular plateaus, J. Heat Transfer 142, 1–8 (2020) [Google Scholar]
  23. O. Aranke, W. Algenaid, S. Awe, S. Joshi, Coatings for automotive grey cast iron bake discs: a review, Coatings 9, 1–27 (2019) [Google Scholar]
  24. T. Faramarz, J. Salman, Analysis of heat conduction in a disk brake system, Heat Mass Transfer 45, 1047–1059 (2009) [CrossRef] [Google Scholar]
  25. A. Rashid, Overview of Disc brakes and related phenomena − a review, Int. J. Vehicle Noise Vibr. 10, 257–301 (2014) [Google Scholar]
  26. A. Belhocine, W.Z.W. Omar, A numerical parametric study of mechanical behavior of dry contact slipping on the disc-pads interface, Alexandria Eng. J. 55, 1127–1141 (2016) [Google Scholar]
  27. B.P. Sethupathi, A. Muthuvel, N. Prakash, S.W. Louis, Numerical analysis of a rotor disc for optimization of disc material, J. Mech. Eng. Autom. 5, 5–14 (2015) [Google Scholar]
  28. G.L. Gigan, M. Ekh, T. Vernersson, R. Lunden, Modelling of gray cast iron for applications to brake discs for heavy vehicles, Proc. Inst. Mech. Eng. D 231, 35–49 (2016) [Google Scholar]
  29. G. Ceuva, A. Sinatora, W.L. Guesser, Tschiptschin, Wear resistance of cast irons used in brake disc rotors, Wear 255, 1256–1260 (2003) [CrossRef] [Google Scholar]
  30. A. Belhocine, A.R.A.B. Bakar, M. Bouchetara, Thermal and structural analysis of disk brake assembly during single stop braking event, Aust. J. Mech. Eng. 14, 26–38 (2016) [Google Scholar]
  31. R. Vijay, L. Singaravelu, R. Jayaganthan, Development and characterization of stainless steel-fiber based copper-free brake liner formulation: a positive solution for steel fiber replacement, Friction 1, 25 (2019) [Google Scholar]
  32. A. Belhocine, M. Bouchetara, Thermomechanical modelling of dry contacts in automotive disc brakes, Int. J. Therm. Sci. 60, 161–170 (2012) [Google Scholar]
  33. H. Heerok, M.-S. Kim, H.-Y. Lee, N.-T. Jeong, H. Moon, E.-S. Lee, H. Kim, M. Suh, J.-d. Chung, J.H. Lee, The thermo-mechanical behavior of brake discs for high-speed railway vehicles, J. Mech. Sci. Technol. 33, 1711–1721 (2019) [Google Scholar]
  34. K. Hakan, T. Ersin, Experimental study on braking and stability performance during low speed braking with ABS under critical load conditions, Eng. Sci. Technol. 24, 1224–1238 (2021) [Google Scholar]
  35. M. Saleh, M. Mohammad, A comparative study between ABS and disc brake system using finite element method, Hal-01624015 1–17 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.