Int. J. Simul. Multidisci. Des. Optim.
Volume 12, 2021
Advances in Modeling and Optimization of Manufacturing Processes
Article Number 8
Number of page(s) 11
Published online 24 June 2021
  1. B. Rodgers, W. Waddell, Tire engineering science and technology of rubber, Science and Technology of Rubber (Elsevier, 2005) [Google Scholar]
  2. M.J.L. Boada et al., Neuralempirical tire model based on recursive lazy learning under combined longitudinal and lateral slip conditions, Int. J. Automotive Technol. 12, 821–829 (2011) [CrossRef] [Google Scholar]
  3. R.S. Vieira, L.C. Nicolazzi, N. Roqueiro, Four-wheel vehicle kinematic and geometric constraints for definition of tire slip angle, Int. J. Automotive Technol. 13, 553–562 (2012) [CrossRef] [Google Scholar]
  4. N.T. Ratrout, Tire condition and drivers practice in maintaining tires in Saudi Arabia, Accid. Anal. Prevention 37, 201206 (2005) [CrossRef] [Google Scholar]
  5. N.T. Rarout, I.A. Mahmoud, Adequacy of the tensile/elongation test as a quality control criterion for vehicle tires, Polymer Test. 25, 588–596 (2006) [CrossRef] [Google Scholar]
  6. M.A. Boodihal et al., Development of tire/road noise assessment methodology in India, Case Stud. Constr. Mater. 1, 115–124 (2014) [Google Scholar]
  7. N.T. Ratrout, Evaluation of passenger car tire fgailure in Saudi Arabia, Arab. J. Sci. Eng. 36, 749–760 (2011) [CrossRef] [Google Scholar]
  8. A. Carcaterra, N. Roveri, Tire grip identification based on strain information: theory and simulations, Mech. Syst. Signal Process. 41, 564–580 (2013) [CrossRef] [Google Scholar]
  9. A. Weyssenhoff et al., Characteristics and investigation of selected manufacturing defects of passenger car tires, in: 13th International Scientific Conference on Sustainable, Modern and Safe Transport (TRANSCOM 2019), High Tatras , May 29–31, 2019, Novy Smokovec − Grand Hotel Bellevue, Slovak Republic [Google Scholar]
  10. P.P. Pattanaik, V. Balu, Plus size tire: effect on the performance of the vehicle, Mater. Today: Proc., available online 28 April 2021 [Google Scholar]
  11. H. Mousavi, C. Sandu, Tire-ice model development for the simulation of rubber compounds effect on tire performance, J. Terramech. 91, 97–115 (2013) [CrossRef] [Google Scholar]
  12. R. He, C. Sandu, M.N. Shenvi, H. Mousavi, J. Carrillo, J.E. Osorio, Laboratory experimental study of tire tractive performance on soft soil: towing mode, traction mode, and multi-pass effect, J. Terramech. 95, 33–58 (2021) [CrossRef] [Google Scholar]
  13. K. Cosseron et al., Optimized gauging for tire–rim loading identification, Eur. J. Mech.A/Solids 87, 104192 (2021) [CrossRef] [Google Scholar]
  14. C. Kang, S. Huang, A. Bayat, Compressibility characteristics of TDA from OTR (off-the-road) tires: a numerical approach, Transport. Geotech. 29, 100561 (2021) [CrossRef] [Google Scholar]
  15. X. Gao, Y. Zhuang, S. Liu, High-speed 3D digital image correlation for measuring tire rolling resistance coefficient, Measurement 171, 108830 (2021) [CrossRef] [Google Scholar]
  16. X. Gao et al., Modeling and experimental study of tire deformation characteristics under high-speed rolling condition, Polymer Test. 107052 (2021) [CrossRef] [Google Scholar]
  17. X. Wang, Automotive Tire Noise and Vibrations, 1st edn., Analysis, Measurement and Simulation, (Butterworth-Heinemann, (2020) [Google Scholar]
  18. L. Chen, L. Cong, Y. Dong, G. Yang, B. Tang, X. Wang, H. Gong, Investigation of influential factors of tire/pavement noise: a multilevel Bayesian analysis of full-scale track testing data, Constr. Build. Mater. 270, 121484 (2021) [CrossRef] [Google Scholar]
  19. M. Cutini, M. Brambilla, P. Toscano, C. Bisaglia, G. Abbati, G. Meloro, Evaluation of drawbar performance of winter tyres for special purpose vehicles, J. Terramech. 87, 29–36 (2020) [CrossRef] [Google Scholar]
  20. S. Mohammadi, A. Ohadi, A novel approach to design quiet tires, based on multi-objective minimization of generated noise, Appl. Acoustics 175, 107825 (2021) [CrossRef] [Google Scholar]
  21. A.-U. Rehman, M. Alkahtani, Automobile tire assessment: a multi-criteria approach, Eng. Technol. Appl. Sci. Res. 7, 1363–1368 (2017) [CrossRef] [Google Scholar]
  22. C.-T. Chang, Binary fuzzy goal programming , Eur. J. Operat. Res. 180, 29–37 (2007) [CrossRef] [Google Scholar]
  23. R. Jayaraman, C. Colapinto, D. Torre, T. Malik, Multi-criteria model for sustainable development using goal programming applied to the United Arab Emirates, Energy Policy 87, 447–454 (2015) [CrossRef] [Google Scholar]
  24. A.P. dos Santos Rubem, J.C.C.B. Soares de Mello, L.A. Meza, A goal programming approach to solve the multiple criteria DEA model, Eur. J. Oper. Res. 260, 134–139 (2017) [CrossRef] [Google Scholar]
  25. D. Broz, N. Vanzetti, G. Corsano, J.M. Montagna, Goal programming application for the decision support in the daily production planning of sawmills, Forest Policy Econ. 102, 29–40 (2019) [CrossRef] [Google Scholar]
  26. G.R. Amin, S. Al-Muharrami, M. Toloo, Combined goal programming and inverse DEA method for target setting in mergers, Expert Syst. Appl. 115, 412–417 (2019) [CrossRef] [Google Scholar]
  27. H.-P. Ho, The supplier selection problem of a manufacturing company using the weighted multi-choice goal programming and MINMAX multi-choice goal programming , Appl. Math. Modell. 75, 819–836 (2019) [CrossRef] [Google Scholar]
  28. R. Al-Husain, R. Khorramshahgol, Incorporating analytical hierarchy process and goal programming to design responsive and efficient supply chains, Oper. Res. Perspect. 7 (2020) [Google Scholar]
  29. S. Coniglio, F. Furini, P.S. Segundo, A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts, Eur. J. Oper. Res. 289, 435–455 (2021) [CrossRef] [Google Scholar]
  30. J. Gmys, M. Mezmaz, N. Melab, D. Tuyttens, A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem, Eur. J. Oper. Res. 284, 814–833 (2020) [CrossRef] [Google Scholar]
  31. F. Theurich, A. Fischer, G. Scheithauer, A branch-and-bound approach for a Vehicle Routing Problem with Customer Costs, EURO J. Comput. Optimiz. 9, 100003 (2021) [CrossRef] [Google Scholar]
  32. M. Becker, N. Ginoux, S. Martin, Z. Roka, Tire Noise Optimization Problem: A Mixed Integer Linear Program Approach, CoRR abs/1809.05058 (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.