Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 10, 2019
Article Number A11
Number of page(s) 11
DOI https://doi.org/10.1051/smdo/2019013
Published online 01 July 2019
  1. M.M. Schwartz, Soldering: understanding the basics , 1st edn. (ASM International, USA, 2014) [Google Scholar]
  2. H.H. Manko, Solder and Soldering , 2nd edn. (McGraw-Hill, New York, 1979) [Google Scholar]
  3. European Parliament. Proposal for a Directive of the European Parliament and of the Council on Waste Electrical and Electronic Equipment and on the restriction of the use of certain hazardous substances in electrical and electronic equipment. COM 2000:347 [Google Scholar]
  4. S. Cheng, C.-M. Huang, M. Pecht, A review of lead-free solders for electronics applications. Microelectron. Reliab. 75 , 77 (2017) [CrossRef] [Google Scholar]
  5. A.K. Gain, L. Zhang, Growth mechanism of intermetallic compound and mechanical properties of nickel (Ni) nanoparticle doped low melting temperature tin-bismuth (Sn-Bi) solder, J. Mater. Sci. Mater. Electron. 27 , 781–794 (2016) [CrossRef] [Google Scholar]
  6. A.K. Gain, Y.C. Chan, K.C. Yung, A. Sharif, L. Ali, Effect of nano Ni additions on the structure and properties of Sn-9Zn and Sn-Zn-3Bi solders in Au/Ni/Cu ball grid array packages, Mater. Sci. Eng. B 162 , 92–98 (2009) [CrossRef] [Google Scholar]
  7. S.K.K.W.M. Chen, C.R. Kaoa, Effects of Ti addition to Sn-Ag and Sn-Cu solders, J. Alloys Compd. 520 , 244–249 (2012) [CrossRef] [Google Scholar]
  8. Y.S. Chen, C.S. Wang, Y.J. Yang, Microelectron. Reliab. 48 , 638–644 (2008) [CrossRef] [Google Scholar]
  9. R.S. Li, A methodology for fatigue prediction of electronic components under random vibration load, J. Electron. Packag. 123 , 394 (2001) [CrossRef] [Google Scholar]
  10. M. Kirs et al., Application of HOHWM for vibration analysis of nanobeams, Key Eng. Mater. 799 , 230–235 (2019) [CrossRef] [Google Scholar]
  11. D.H. Bassir, J.L. Zapico, M.P. González, R. Alonso, Identification of a spatial linear model based on earthquake-induced data and genetic algorithm with parallel selection, Int. J. Simul. Multidisci. Des. Optim. 1 , 39–48 (2007) [CrossRef] [Google Scholar]
  12. R. Chaari, M. Abennadher, J. Louati, M. Haddar, Mathematical methodology for optimization of the clamping forces accounting for workpiece vibratory behavior, Int. J. Simul. Multisci. Des. Optim. 5 , A13 (2014) [CrossRef] [Google Scholar]
  13. T. Liu, J.-H. Zhu, F. He, H. Zhao, Q. Liu, C. Yang, A MAC based excitation frequency increasing method for structural topology optimization under harmonic excitations, Int. J. Simul. Multisci. Des. Optim. 8 , A4 (2017) [CrossRef] [Google Scholar]
  14. R.R. Schaller, Moore's law: past, present and future, IEEE Spectr. 34 , 52–59 (1997) [CrossRef] [Google Scholar]
  15. B.M. Guenin, R.C. Marrs, R.J. Molnar, Analysis of a thermally enhanced ball grid array package, IEEE Trans. Compon. Packaging Manuf. Technol. 18 , 749–757 (1995) [CrossRef] [Google Scholar]
  16. C.H. Zhong, S. Yi, Solder joint reliability of plastic ball grid array packages, Solder. Surf. Mount Technol. 11 , 44–48 (1999) [CrossRef] [Google Scholar]
  17. Y. Jiang, H. Li, G. Chen et al., Electromigration behavior of Cu/Sn3.0Ag0.5Cu/Cu ball grid array solder joints, J. Mater. Sci. Mater. Electron. 30 , 6224–6233 (2019) [CrossRef] [Google Scholar]
  18. J.X. Wang, Green Electronics Manufacturing , Chap. 8, 1st edn. (CRC Press, Raton, 2012) [CrossRef] [Google Scholar]
  19. L. Bai, X. Yang, H. Gao, A novel coarse-fine method for ball grid array component positioning and defect inspection, IEEE Trans. Ind. Electron. 65 , 5023–5031 (2018) [CrossRef] [Google Scholar]
  20. S. Jayesh, J. Elias, Met. Mater. Int. (2019). DOI: https://doi.org/10.1007/s12540-019-00305-3 [Google Scholar]
  21. S. Jayesh, J. Elias, Experimental investigations on the effect of addition of Ag into ternary lead free solder alloy Sn-1Cu-1Ni, Lett. Mater. 9 , 239–242 (2019) [CrossRef] [Google Scholar]
  22. T. Stolarski, Y. Nakasone, S. Yoshimoto, Engineering Analysis with ANSYS Software , 2nd edn. (Butterworth Heinmann, USA, 2018) [Google Scholar]
  23. G. Yagawa, T. Furukawa, Recent developments of free mesh method, Int. J. Numer. Meth. Eng. 47 , 1419–1443 (2000) [CrossRef] [Google Scholar]
  24. D.S.H. Lo, Finite element mesh generation (CRC Press, Bocs Raton, 2018) [Google Scholar]
  25. S.A. Mitchell, Choosing corners of rectangles for mapped meshing (ACM, New York, 1996) [Google Scholar]
  26. J. He, Z.-F. Fu, Basic vibration theory, in: Modal Analysis (Butterworth-Heinemann, Oxford, 2001), pp. 49–78 [CrossRef] [Google Scholar]
  27. J. He, Z.-F. Fu, Frequency response function measurement, in: Modal Analysis (Butterworth-Heinemann, Oxford, 2001), pp. 140–158 [CrossRef] [Google Scholar]
  28. Y. Cinar, G.J. Jang, Mech. Sci. Technol. 28 , 107 (2014) [CrossRef] [Google Scholar]
  29. P. Lall, S. Gupte, P. Choudhary, J. Suhling, Solder joint reliability in electronics under shock and vibration using explicit finite-element submodeling, IEEE Trans. Electron. Packag. Manuf. 30 , 74–83 (2007) [CrossRef] [Google Scholar]
  30. Y. Zhou, M. Al-Bassyiouni, A. Dasgupta, Harmonic and random vibration durability of SAC305 and Sn37Pb solder alloys, IEEE Trans. Compon. Packaging Technol. 33 , 319–328 (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.