Open Access
Issue |
Int. J. Simul. Multidisci. Des. Optim.
Volume 10, 2019
|
|
---|---|---|
Article Number | A10 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/smdo/2019010 | |
Published online | 07 June 2019 |
- W.I. Zangwill, Nonlinear programming via penalty functions, Manag. Sci. 13, 344 (1967) [CrossRef] [Google Scholar]
- B.W. Kort, D.P. Bertsekas, Combined primal-dual and penalty method for convex programming, SIAM J. Cont. Optim. 14, 268 (1976) [CrossRef] [Google Scholar]
- R.V. Rao, Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems, Int. J. Ind. Eng. Comput. 7, 19 (2016) [Google Scholar]
- A. Cherukuri, E. Mallada, J. Cortes, Asymptotic convergence of constrained primal-dual dynamics, Syst. Control Lett. 87, 10 (2016) [CrossRef] [Google Scholar]
- C. Kanzow, D. Steck, Augmented Lagrangian and exact penalty methods for quasi-variational inequalities. Comput. Optim. Appl. 69, 801 (2017) [CrossRef] [Google Scholar]
- R.A. Shandiz, E. Tohidi, Decrease of the penalty parameter in differentiable penalty function methods, Theor. Econ. Lett. 1, 8 (2011) [CrossRef] [Google Scholar]
- G.D. Pillo, L. Grippo, A continuously differentiable exact penalty function for nonlinear programming problems with inequality constraints, SIAM J. Cont. Optim. 23, 72 (1985) [CrossRef] [Google Scholar]
- Z. Chen, Y. Dai, A line search exact penalty method with bi-object strategy for nonlinear constrained optimization, J. Comput. Appl. Math. 300, 245 (2016) [CrossRef] [Google Scholar]
- X.L. Sun, D. Li, Logarithmic-exponential penalty formulation for integer programming, Appl. Math. Lett. 12, 73 (1999) [CrossRef] [Google Scholar]
- M. Bazaraa, H. Sherali, C. Shetty, Nonlinear Programming Theory and Algorithms (John Wiley & Sons, Inc. New Jersey, 2006), 3rd edn. [Google Scholar]
- W. Changyu, X. Yang, X. Yang, Nonlinear lagrange duality theorems and penalty function methods in continuous optimization, J. Glob. Optim. 27, 473 (2003) [CrossRef] [Google Scholar]
- D.Y. Gao, N. Ruan, H.D. Sherali, Solutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality, J. Glob. Optim. 45, 473 (2009) [CrossRef] [Google Scholar]
- T. Antczak, Penalty function methods and a duality gap for invex optimization problems, Nonlinear Anal. Theory Methods Appl. 71, 3322 (2009) [CrossRef] [Google Scholar]
- M. Hanson, On sufficiency of the Kuhn-Tucker conditions in nondifferentiable programming, J. Math. Anal. Appl. 80, 545 (1981) [CrossRef] [Google Scholar]
- B.D. Craven, Invex functions and constrained local minima, Bull. Aust. Math. Soc. 24, 357 (1981) [CrossRef] [MathSciNet] [Google Scholar]
- E. Ernst, M. Volle, Generalized Courant-Beltrami penalty functions and zero duality gap for conic convex programs, Positivity 17, 945 (2013) [CrossRef] [Google Scholar]
- N. Kanzi, M. Soleimani-damaneh, Slater CQ, optimality and duality for quasiconvex semi-infinite optimization problems, J. Math. Anal. Appl. 434, 638 (2016) [CrossRef] [Google Scholar]
- M. Soleimani-damaneh, Penalization for variational inequalities, Appl. Math. Lett. 22, 347 (2009) [CrossRef] [Google Scholar]
- M. Soleimani-damaneh, Nonsmooth optimization using Mordukhovich's subdifferential, SIAM J. Control Optim. 48, 3403 (2010) [CrossRef] [Google Scholar]
- M. Hassan, A. Baharum, A new logarithmic penalty function approach for nonlinear constrained optimization problem, Deci. Sci. Lett. 8, 3 (2019) [Google Scholar]
- D.P. Bertsekas, On penalty and multiplier methods for constrained minimization, SIAM J. Cont. 14, 216 (1976) [CrossRef] [Google Scholar]
- T. Antczak, Exact penalty functions method for mathematical programming problems involving invex functions, Eur. J. Oper. Res. 198, 29 (2009) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.