Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 10, 2019
Article Number A9
Number of page(s) 7
DOI https://doi.org/10.1051/smdo/2019011
Published online 10 June 2019
  1. ISO/ASTM WD 5293 2, Additive manufacturing − Environmental health and safety − Standard test method for determination of particle emission rates from desktop 3D printers using material extrusion, 2012 [Google Scholar]
  2. A.a. Alafaghani, et al., Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach Procedia Manuf. 10 (Supplement C), 791–803 (2017) [CrossRef] [Google Scholar]
  3. B. Anna, Selçuk, Mechanical characterization of parts fabricated using fused deposition modeling, Rapid Prototyp. J. 9 , 252–264 (2003) [CrossRef] [Google Scholar]
  4. C. Casavola et al., Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory, Mater. Des. 90 , 453–458 (2016) [CrossRef] [Google Scholar]
  5. S. Bakrani Balani et al., Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid, Addit. Manuf. 25, 112–121 (2019) [CrossRef] [Google Scholar]
  6. D. Popescu et al., FDM process parameters influence over the mechanical properties of polymer specimens: a review, Polym. Test. 69 , 157–166 (2018) [CrossRef] [Google Scholar]
  7. H. Li et al., The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties, Rapid Prototyp. J. 24 , 80–92 (2018) [CrossRef] [Google Scholar]
  8. K. Li et al., Study on the mechanical performance optimization of fdm built parts, in: Applied Sciences in Graphic Communication and Packaging , Springer, Berlin, 2018, pp. 563–569 [CrossRef] [Google Scholar]
  9. J.R.C. Dizon et al., Mechanical characterization of 3D-printed polymers, Addit. Manuf. 20 , 44–67 (2018) [CrossRef] [Google Scholar]
  10. A. Le Duigou et al., 3D printing of wood fibre biocomposites: From mechanical to actuation functionality, Mater. Des. 96, 106–114 (2016) [CrossRef] [Google Scholar]
  11. A. Shahzad, A study in physical and mechanical properties of hemp fibres, Adv. Mater. Sci. Eng. 2013 (2013) [CrossRef] [Google Scholar]
  12. H. Peltola et al., Wood based PLA and PP composites: effect of fibre type and matrix polymer on fibre morphology, dispersion and composite properties, Compos. Part A Appl. Sci. Manuf. 61 , 13–22 (2014) [CrossRef] [Google Scholar]
  13. K. Szykiedans, W. Credo, D. Osiński, Selected mechanical properties of PETG 3-D prints, Procedia Eng. 177 , 455–461 (2017) [CrossRef] [Google Scholar]
  14. J. Avila, S. Bose, A. Bandyopadhyay, Additive manufacturing of titanium and titanium alloys for biomedical applications, in Titanium in Medical and Dental Applications, Elsevier, Cambridge, 2018, pp. 325–343 [CrossRef] [Google Scholar]
  15. N.E. Zander, M. Gillan, R.H. Lambeth, Recycled polyethylene terephthalate as a new FFF feedstock material, Addit. Manuf. 21 , 174–182 (2018) [CrossRef] [Google Scholar]
  16. O. Carneiro, A. Silva, R. Gomes, Fused deposition modeling with polypropylene, Mater. Des. 83 , 768–776 (2015) [CrossRef] [Google Scholar]
  17. D. Stoof, K. Pickering, Sustainable composite fused deposition modelling filament using recycled pre-consumer polypropylene, Compos. Part B Eng. 135 , 110–118 (2017) [CrossRef] [Google Scholar]
  18. M. Milosevic, D. Stoof, K. Pickering, Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites, J. Compos. Sci. 1 , 7 (2017) [CrossRef] [Google Scholar]
  19. L. Wang, D.J. Gardner, Effect of fused layer modeling (FLM) processing parameters on impact strength of cellular polypropylene, Polymer, 113 , 74–80 (2017) [CrossRef] [Google Scholar]
  20. R.H. Sanatgar, C. Campagne, V. Nierstrasz, Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: effect of FDM printing process parameters, Appl. Surf. Sci. 403 , 551–563 (2017) [CrossRef] [Google Scholar]
  21. S. Aslanzadeh et al., Investigation on electrical and mechanical properties of 3D printed nylon 6 for RF/microwave electronics applications, Addit. Manuf. 21 , 69–75 (2018) [CrossRef] [Google Scholar]
  22. ISO and ASTM International Unveil Framework for Creating Global Additive Manufacturing Standards, MENA Report, Albawaba (London) Ltd., 2016 [Google Scholar]
  23. N. Aliheidari et al., Fracture resistance measurement of fused deposition modeling 3D printed polymers, Polym. Test. 60 , 94–101 (2017) [CrossRef] [Google Scholar]
  24. J. Chacón et al., Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection, Mater. Des. 124 , 143–157 (2017) [CrossRef] [Google Scholar]
  25. B. Wittbrodt, J.M. Pearce, The effects of PLA color on material properties of 3-D printed components, Addit. Manuf. 8 , 110–116 (2015) [CrossRef] [Google Scholar]
  26. R.T.L. Ferreira et al., Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers, Compos. Part B Eng. 124 , 88–100 (2017) [CrossRef] [Google Scholar]
  27. K. Abouzaid, S. Guessasma, S. Belhabib, D. Bassir, A. Chouaf, Printability of co-polyester using fused deposition modelling and related mechanical performance, Eur. Polym. J. 108 , 262–273 (2018) [CrossRef] [Google Scholar]
  28. N. Aliheidari et al., Measuring the interlayer fracture resistance of FDM printed thermoplastics, presented at Society of Plastics Engineers, Annual Technical Conference SPE-ANTEC, At Indianapolis, Indiana, 2016 [Google Scholar]
  29. T.D. McLouth et al., The impact of print orientation and raster pattern on fracture toughness in additively manufactured ABS, Addit. Manuf. 18 , 103–109 (2017) [CrossRef] [Google Scholar]
  30. J. Torres et al., An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments, Rapid Prototyp. J. 22 , 387–404 (2016) [CrossRef] [Google Scholar]
  31. K.R. Hart, E.D. Wetzel, Fracture behavior of additively manufactured acrylonitrile butadiene styrene (ABS) materials, Eng. Fract. Mech. 177 , 1–13 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.