Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 10, 2019
Article Number A2
Number of page(s) 5
Published online 12 March 2019
  1. X.S. Yao, L. Maleki, Optoelectronic microwave oscillator, J. Opt. Soc. Am. B 13, 1725–1735 (1996) [CrossRef] [Google Scholar]
  2. D. Eliyahu, D. Seidel, L. Maleki, Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system, in Proceedings of the IEEE International Frequency Control Symposium, Honolulu, USA, May 19–21, 2008 [Google Scholar]
  3. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Laser phase and frequency stabilization using an optical resonator, Appl. Phys. B 31 , 97–105 (1983) [NASA ADS] [CrossRef] [Google Scholar]
  4. J.W. Strutt, The theory of sound (Cambridge University Press, Cambridge, 1877) (print publication year: 2011; first published in 1877), ISBN: 9781139058087 [Google Scholar]
  5. A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, G.C. Righini, Spherical whispering-gallery-mode microresonators, Laser Phot. Rev. 4 , 457–482 (2010) [CrossRef] [Google Scholar]
  6. H. Tavernier, P. Salzenstein, K. Volyanskiy, Y.K. Chembo, L. Larger, Magnesium fluoride whispering gallery mode disk-resonators for microwave photonics applications, IEEE Phot. Tech. Lett. 22 , 1629–1631 (2010) [Google Scholar]
  7. I.S. Grudinin, V.S. Ilchenko, L. Maleki, Ultrahigh optical Q factors of crystalline resonators in the linear regime, Phys. Rev. A 74 , 063806 (2006) [CrossRef] [Google Scholar]
  8. K. Volyanskiy, P. Salzenstein, H. Tavernier, M. Pogurmirskiy, Y.K. Chembo, L. Larger, Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode disk-resonators and phase modulation, Opt. Express 18 , 22358–22363 (2010) [CrossRef] [Google Scholar]
  9. Y. Dumeige, S. Trebaol, L. Ghisa, T.K. Ngan Nguyen, H. Tavernier, P. Féron, Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers, J. Opt. Soc. Am. B 25 , 2073–2080 (2008) [CrossRef] [Google Scholar]
  10. R. Henriet, A. Coillet, P. Salzenstein, K. Saleh, L. Larger, Y.K. Chembo, Experimental characterization of optoelectronic oscillators based on optical mini-resonators, in Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Prague, Czech Republic, 2013, pp. 37–39 [CrossRef] [Google Scholar]
  11. M. Zarubin, P. Salzenstein, Temperature controlled optical resonator process for optoelectronic oscillator application, Proc. SPIE 9503 , 950311 (2015) [CrossRef] [Google Scholar]
  12. P. Salzenstein, S. Diallo, M. Zarubin, Electrically driven thermal annealing set-up dedicated to high quality factor optical resonator fabrication, J. Power Tech. 98 , 198–201 (2018) [Google Scholar]
  13. D. Bassir, P. Salzenstein, M. Zhang, Optimization of coupled device based on optical fiber with crystalline and integrated resonators, Proc. SPIE 10228 , 102280Z (2017) [CrossRef] [Google Scholar]
  14. A.A. Savchenkov, A.B. Matsko, V.S. IIchenko, L. Maleki, Optical resonators with ten million finesse. Opt. Express 15 , 6768 (2007) [CrossRef] [Google Scholar]
  15. P. Salzenstein, M. Mortier, H. Sérier-Brault, R. Henriet, A. Coillet, Y.K. Chembo, A. Rasoloniaina, Y. Dumeige, P. Féron, Coupling of high quality factor optical resonators, Physica Scripta T 157 , 014024 (2013) [CrossRef] [Google Scholar]
  16. R. Henriet, P. Salzenstein, D. Ristic, A. Coillet, M. Mortier, A. Rasoloniaina, K. Saleh, G. Cibiel, Y. Dumeige, M. Ferrari, Y.K. Chembo, O. Llopis, P. Féron, High quality factor optical resonators, Physica Scripta T 162 , 014032 (2014) [CrossRef] [Google Scholar]
  17. K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I.V. Balakireva, P. Salzenstein, A. Coillet, Y.K. Chembo, Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators, Opt. Express 22 , 32158–32173 (2014) [CrossRef] [Google Scholar]
  18. E.D. Black, An introduction to Pound-Drever-Hall laser frequency stabilization, Am. J. Phys. 69 , 79–87 (2001) [NASA ADS] [CrossRef] [Google Scholar]
  19. P. Salzenstein, K. Saleh, M. Zarubin, A.S. Trushin, Comparison of two methods of laser stabilization for optoelectronic oscillators, Proc. SPIE 9134 , 91342I (2014) [CrossRef] [Google Scholar]
  20. V.B. Voloshinov, P.A. Nikitin, A.S. Trushin, L.N. Magdich, Acousto-optic cell based on paratellurite crystal with surface excitation of acoustic waves, Tech. Phys. Lett. 37 , 754–756 (2011) [CrossRef] [Google Scholar]
  21. N. Gupta, V.B. Voloshinov, G.A. Knyazev, L.A. Kulakova, Optical transmission of single crystal tellurium for application in acousto-optic cells, J. Opt. 13 , 055702 (2011) [CrossRef] [Google Scholar]
  22. P. Salzenstein, V.B. Voloshinov, A.S. Trushin, Investigation in acousto-optic laser stabilization for crystal resonator based optoelectronic oscillators, Opt. Eng. 52 , 024603 (2013) [CrossRef] [Google Scholar]
  23. P. Salzenstein, E. Pavlyuchenko, A. Hmima, N. Cholley, M. Zarubin, S. Galliou, Y.K. Chembo, L. Larger, Estimation of the uncertainty for a phase noise optoelectronic metrology system, Physica Scripta T 149 , 014025 (2012) [CrossRef] [Google Scholar]
  24. P. Salzenstein, T.Y. Wu, Uncertainty analysis for a phase-detector based phase noise measurement system, Measurement 85 , 118–123 (2016) [CrossRef] [Google Scholar]
  25. J. Tang, T. Hao, D. Domenech, R. Banos, O. Munoz, N. Zhu, J. Capmany, M. Li, Integrated optoelectronic oscillator, Opt. Express 26 , 12257–12265 (2018) [CrossRef] [Google Scholar]
  26. L. He, Y. Guo, Z. Han, K. Wada, J. Michel, A.M. Agarwal, L.C. Kimerling, G. Li, L. Zhang, Broadband athermal waveguides and resonators for datacom and telecom applications, Phot. Res. 6 , 987–990 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.