Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 10, 2019
Article Number A1
Number of page(s) 10
Published online 12 March 2019
  1. G.I.N. Rozvany, M. Zhou, T. Birker, Generalized shape optimization without homogenization. Struct. Optim. 4 , 250–252 (1992) [CrossRef] [Google Scholar]
  2. M.P. Bendsøe, Optimal shape design as a material distribution problem. Struct. Optim. 1 , 193–202 (1989) [CrossRef] [Google Scholar]
  3. K. Suzuki, N. Kikuchi, Homogenization method for shape and topology optimization. Comput. Methods Appl. Mech. Eng. 93 , 291–318 (1991) [CrossRef] [Google Scholar]
  4. K. Suzuki, N. Kikuchi, A homogenization method for shape and topology optimization. Comput. Methods Appl. Mech. Eng. 93 , 291–318 (1989) [CrossRef] [Google Scholar]
  5. X. Guo, et al. Stress-related topology optimization via level set approach. Comput.Methods Appl. Mech. Eng. 200 , 3439–3452 (2011) [CrossRef] [Google Scholar]
  6. Q. Xia, et al. A level set solution to the stress-based structural shape and topology optimization. Comput. Struct. 90 , 55–64 (2012) [CrossRef] [Google Scholar]
  7. Y.M. Xie, X. Huang, Recent developments in evolutionary structural optimization (ESO) for continuum structures. IOP Conf. Ser. Mater. Sci. Eng. 10 , 012196 (2010) [CrossRef] [Google Scholar]
  8. Y.M. Xie, G.P. Steven, Evolutionary structural optimization (Springer, London, 1997) [CrossRef] [Google Scholar]
  9. Y. Li, et al. Bi-directional evolutionary structural optimization for design of compliant mechanisms. Key Eng. Mater. 535–536 , 373–376 (2013) [CrossRef] [Google Scholar]
  10. O.M. Querin, G.P. Steven, Y.M. Xie, Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng. Comput. 15 , 1031–1048 (1998) [CrossRef] [Google Scholar]
  11. J.D. Deaton, R.V. Grandhi, A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscipl. Optim. 49 , 1–38 (2014) [CrossRef] [Google Scholar]
  12. G.G. Tejani, et al. Size, shape, and topology optimization of planar and space trusses using mutation-based improved metaheuristics. J. Comput. Des. Eng. 5 , 198–214 (2018) [Google Scholar]
  13. V.J. Savsani, G.G. Tejani, V.K. Patel, Truss topology optimization with static and dynamic constraints using modified subpopulation teaching-learning-based optimization. Eng. Optim. 48 , 1990–2006 (2016) [CrossRef] [Google Scholar]
  14. V.J. Savsani, et al. Modified meta-heuristics using random mutation for truss topology optimization with static and dynamic constraints. J. Comput. Des. Eng. 4 , 106–130 (2017) [Google Scholar]
  15. K. Liu, A. Tovar, An efficient 3D topology optimization code written in MATLAB. Struct. Multidiscipl. Optim. 50 , 1175–1196 (2014) [CrossRef] [Google Scholar]
  16. M. Bruggi, P. Duysinx, Topology optimization for minimum weight with compliance and stress constraints. Struct. Multidiscipl. Optim. 46 , 369–384 (2012) [CrossRef] [Google Scholar]
  17. A. Erik, et al. Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscipl. Optim. 43 , 1–16 (2011) [CrossRef] [Google Scholar]
  18. R. Picelli, et al. Stress minimization using the level set topology optimization, in 58th AIAA/ASCE/AHS/ASC Structures , Structural Dynamics, and Materials Conference , Grapevine, Texas, 2017 [Google Scholar]
  19. N. Changizi, H. Kaboodanian, M. Jalalpour, Stress-based topology optimization of frame structures under geometric uncertainty. Comput. Methods Appl. Mech. Eng. 315 , 121–140 (2017) [CrossRef] [Google Scholar]
  20. O. Sigmund, K. Maute, Topology optimization approaches. Struct. Multidiscipl. Optim. 48 , 1031–1055 (2013) [CrossRef] [MathSciNet] [Google Scholar]
  21. H. Li, et al. A level set method for topological shape optimization of 3D structures with extrusion constraints. Comput. Methods Appl. Mech. Eng. 283 , 615–635 (2015) [CrossRef] [Google Scholar]
  22. P.D. Dunning, B.K. Stanford, H.A. Kim, Coupled aerostructural topology optimization using a level set method for 3D aircraft wings. Struct. Multidiscipl. Optim. 51, 1113–1132 (2015) [CrossRef] [Google Scholar]
  23. R. Huang, X. Huang, MATLAB implementation of 3D topology optimization using BESO, in: The 21st Australian Conference on the Mechanics of Structures and Materials. Taylor & Francis Group, London, 2011. [Google Scholar]
  24. P. Duysinx, O. Sigmund, New development in handling stress constraints in optimal material distribution, in: 7th AIAA /USAF/NASA/ISSMO Symposium on multidisciplinary analysis and optimization, vol. 3, St. Louis, Missouri, 1998, pp. 1501–1509. [Google Scholar]
  25. P. Duysinx, M.P. Bendsøe, Topology optimization of continuum structures with local stress constraints. Int. J. Numer. Methods Eng. 43 , 1453–1478 (1998) [CrossRef] [MathSciNet] [Google Scholar]
  26. A. Erik, et al. Efficient topology optimization in MATLAB using 88 lines of code. Struct. Mult. Optim. 43 , 1–16 (2011) [CrossRef] [Google Scholar]
  27. O. Sigmund, A 99 line topology optimization code written in MALTLAB. Struct. Multidiscipl. Optim. 21 , 120–127 (2001) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.