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Abstract – State estimation of power system is an important tool for operation, analysis and forecasting of electric
power system. In this paper, a Kalman filter algorithm is presented for static estimation of power system state
variables. IEEE 14 bus system is employed to check the accuracy of this method. Newton Raphson load flow study
is first carried out on our test system and a set of data from the output of load flow program is taken as measurement
input. Measurement inputs are simulated by adding Gaussian noise of zero mean. The results of Kalman estimation
are compared with traditional Weight Least Square (WLS) method and it is observed that Kalman filter algorithm is
numerically more efficient than traditional WLS method. Estimation accuracy is also tested for presence of parametric
error in the system. In addition, numerical stability of Kalman filter algorithm is tested by considering inclusion of
zero mean errors in the initial estimates.
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1 Introduction

Power system state estimation is an important tool of
energy management system. Power systems are monitored by
supervisory control system. This kind of control system
basically monitors the status of control switches, circuit
breaker operation at the susbstations. These supervisory
control systems also have the capability to monitor real-time
system data, allowing the control centers to gather all sorts
of analog measurements and circuit breaker status data from
the power system [1]. The main purpose of these type of data
acquisition is to maintain security of power system operation.
But, the information provided by the Supervisory Control
and Data Acquisition (SCADA) system may not always be true
due to the presence of errors in the measurements, telemetry
failures, communication noise, etc. Moreover, the collected
set of measurements may not allow direct extraction of the
parameter of interest. For example voltage angle at the buses
cannot be measured directly. Besides that telemetering all the
data of interest may require large numbers of sensors which
are not feasible economically or practically. Power system state
estimation processes redundant raw measurements and

available data sets in order to find an optimal estimate of the
current operating states [1]. Usually bus voltage and angles
are estimated in power system state estimation.

The idea of state estimation was first presented by
Gauss and Legendre (around 1800). Least square state
estimation in which the sum of the residual squares are
minimised was the first technique which was applied for state
estimation purpose [2].

State estimation was first applied to power systems by
Schweppe and Wildes in the late 1960’s [3]. Since then various
methods have been used for power system state estimation.
In paper [4], a comparative study was done between various
methods. The study mainly explains the numerical stability,
computational efficiency and implementation complexity of
different methods.

In this paper two methods called Weight Least Square
(WLS) state estimation and Kalman filter state estimation have
been used for estimation of bus voltage and angles. WLS
technique [1, 5] is a conventional technique in which weighted
sum of the residual squares are minimised. Another method
called Kalman filter estimation has been implemented here
and it is observed that this method is more efficient computation-
ally. In the context of complexity, this method is easier to
implement.*e-mail: anupam.saikia9@gmail.com
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The theory of Kalman filter algoritm can be found in
paper [6]. It was first presented around 1960. After that several
applications of Kalman filters have been done in power
systems. In paper [7] Kalman filer is used for distance
relaying scheme and in [8] Kalman filter has been used for
power system measurements for relaying. Moreover, in [9]
Kalman filter has been used for harmonic analysis purpose.
Since power system equations are nonlinear in nature hence
extended Kalman filter [10] has been applied to Kalman filter
algorithm. Power system can be modelled by different types of
dynamic equations. In references [11, 12] a model based on
calculation of Jacobian of real and reactive power injection
has been used for Kalman filter application. In our model,
for modelling of power system dynamics formation of
Jacobian matrix is not required.

The real model of power system may contain two types
of errors: parametric errors and non parametric errors [13].
Parametric errors are those error whose occur in a power
system due to the use of incorrect values of parameter such
as incorrect value of resistance or reactance. In case of non
parametric error approximate power system models are used
instead of real one. In papers [14, 15], a method called
extended weight least square method has been used for
investing the characteristics of parametric and non paramet-
ric errors. In this paper parametric error is taken in to
account and it has been observed that Kalman filter
estimation is efficient for the presence of parametric error
also.

The paper is organized into four sections. The introductory
section provides an overview of importance of state estimator
in power system operation and different methods which were
briefly explained for state estimation of power system. The sec-
ond section describes the modelling of power system equation
for Kalman filter and WLS algorithms. WLS and Kalman filter
equations along with their steps has been briefly presented in
this section.

Thrid section presents the outputs of our algorithms. In this
section computational efficiency, numerical stability and
behaviour of our algorithm for the presence of parametric
errors have been checked. Finally conclusion is provided in
Section 4.

2 Methodology

2.1 Modelling of power system

The power system dynamics can be represented by the
following equation:

xkþ1 ¼ Akxk þ wk ð1Þ
where, xk stands for power system state variables. Ak is state
transition matrix. wk is noise and nonlinearity present in the
system. From the above model it is clear that system state at
instant k + 1 is dependent on the system state at instant k.

In our work a simple system dynamic model [9] has been
used. Here it is assumed that power system is quasi static state
in nature. System state variable at instant k + 1 is same as at
instant k expect that state variable is subjected to small

oscillations. Thus, mathematical model for the simplified
system can be written as

xkþ1 ¼ xk þ wk ð2Þ
where,

xk = [Vh],

V = All bus voltages,
h = All bus angles,

wk = Gaussian noise with zero mean.

In equation (2), system matrix A is assumed as the identity
matrix. This model used essentially that for linear, time
invariant system [16]. For complex models Ak will be time
dependent. But for our static estimation the model presented
in equation (2) is giving satisfactory results. A positive definite
matrix Q having zero cross correlation is assumed which is
defined as the covariance matrix for our Gaussian noise wk.
The elements of the covariance matrix will depend upon power
system history. Adaptive techniques can be used to tune the
elements of the covariance matrix Q [9]. But this is beyond
the objective of this paper. Hence in this paper the value of
Q is assumed kept in the range 0.01–0.1.

State estimation is a process in which states of a system is
determined by a redundant set of measurements. The equation
relating to state of a system measurement vector with the states
can be written as

zk ¼ hðxkÞ þ e ð3Þ
where,

zk ¼ V ; P i;Qi; P f ; Qf

� �
;

zk is a subset of measurement vector consisting of voltage,
real power injections, reactive power injections, real power
flows, reactive power flows.

e = Gaussian noise in the measurement. It is assumed that
noise has zero mean and its corresponding covariance matrix is
denoted by R.

Since power system equations are nonlinear in nature,
hence h(xk) will be a nonlinear function of state variables.
In order to linearize h(xk) Taylor series expansion is used,

zk ¼ h xk
0

� �
þ dh

dh
xk � xk

0

� �
þ vk ð4Þ

In equation (4), higher order terms are neglected and error
due to linearization is included in new variable vk. Equation (4)
can be further simplified to the following form

�zk ¼ H k�xk þ vk ð5Þ
where, �zk ¼ zk � h xk

0

� �
, �xk ¼ xk � xk

0 and xk
0 is the initial

operating point.

2.2 WLS method

Weight least square technique can be used for static
estimation purpose. Hence, for a particular time instant
equation (5) can be rewritten as

�z ¼ H�xþ v ð6Þ
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In order to implement WLS method, numbers of
measurement variable m has to be more than number of state
variables. Moreover the rank of Jacobian matrix should be
equal to number of state variables. In WLS technique an
objective function J(x) which is equal to the weighted sum
of squares of residuals is minimized. J(x) is given by,

J xð Þ ¼ z� h xð Þ½ �T R�1 z� h xð Þ½ � ð7Þ
For minimization, J(x) is differentiated as follows,

g xð Þ ¼ dJ xð Þ
dx
¼ �H T xð ÞR�1 z� h xð Þð Þ ¼ 0 ð8Þ

If g(x) is expanded using Taylor series expansion then,

g xð Þ ¼ g xið Þ þ G xið Þ x� xið Þ ð9Þ
where, gain matrix, G xð Þ ¼ dg xið Þ

dx .

In the above expression higher order terms are neglected.
Hence, an iterative procedure must be adopted in order to find
out the estimation in which a tolerance limit has to be satisfied
between successive iterations. The tolerance limit for our case
is taken as 1e � 4. The iteration will stop when the maximum
value of Dx is less tan convergence limit. The estimation of
(i + 1)th iteration can be derived as

xiþ1 ¼ xi � G xið Þ½ ��1
g xið Þ ð10Þ

The computational steps used in WLS technique can be
expressed as follows [1]:

1. Begin iteration, set iteration number i = 1,
2. initialise the value of state vector,
3. read measurement inputs,
4. calculate measurement Jacobian H(x),
5. calculate gain matrix G(x),
6. solve for Dx,
7. check for convergence limit,
8. if required convergence criteria is not fulfilled then incre-

ment iteration index and go to Step 4.

2.3 Kalman filter

A Kalman filter is called as an optimal estimator. It has the
capability to estimate parameters of interest from uncertain,
noisy and indirect observations. Kalman filter is recursive in
nature and hence it can be applied for online data estimation
also. But in this paper a static estimation has been done using
Kalman filter to compare the results with conventional WLS
technique. The mathematical model for a Kalman filter can
be expressed as follows:

xkþ1 ¼ Axk þ Buk þ wk ð11Þ
where,

d xk+1 and xk are system state variables at discrete time
instant k + 1 and k respectively.

d uk denotes a set of control variables.
d A and B are matrixes which link the state variables at

time k to the state variables at time k + 1.

For the above mathematical model of Kalman filter follow-
ing are the necessary assumptions are taken:

E x0½ � ¼ x0

E wk½ � ¼ 0 8 k

E x0; wk½ � ¼ 0 8 k
E vk½ � ¼ 0 8 k

E x0; vk½ � ¼ 0 8 k

E vj; vk

� �
¼ 0 8 k 6¼ j

E wj; w
� �

¼ 0 8 k 6¼ j

In this paper a simplified linearised model as discussed in
equations (2) and (6) are used to find out the optimal solutions.
Hence it is called extended Kalaman filter algorithm. But,
when iterative procedure is adopted then for each iteration
the computational steps for both linear Kalman algorithm
and extended Kalman algorithm will be the same.

In this algorithm it is assumed that at any time instant
initial estimates, x0 are known and its corresponding
covariance matrix, P 0

K is also known. Then computational steps
for Kalman filter can be written as follows:

d initialise initial estimate and its associated covariance
matrix,

d read a set of measurement inputs,
d calculate Dzk,
d calculate Jacobian matrix Hk,
d calculate Kalman gain Gk,

Gk ¼ P 0HT
k H kP 0

kH T
k þ R

� ��1 ð12Þ

d solve for Dx,

Dx ¼ Gk Dzk � h xkð Þð Þ ð13Þ

d update error covariance matrix,

P k ¼ ðI � GkH kÞP 0
k ð14Þ

P 0
kþ1 ¼ P k þ Qk ð15Þ

d above steps are repeated for allowable tolerance limit of
Dx.

Initial estimates error are considered as uncorrelated with
zero mean having only diagonal entries in the covariance
matrix. In this paper the initial estimates are assumed as flat
i.e. bus voltage magnitudes and corresponding bus angles are
1 p.u. and 0� respectively. But based on modelling of the
dynamic model other conditions for initial estimates can be
taken in to account [11].

3 Results and discussion

The effectiveness of our algorithm is checked on the IEEE
14 bus system. The single line diagram of IEEE 14 bus system
is shown in Figure 1.
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Newton Raphson load flow study has been carried out on
our test system. The results of Newton Raphson load flow
analyses are shown in Tables 1 and 2.

A subset of above results consisting of bus voltage, active
power injection, reactive power injection, active power flow
and reactive power flow between buses are taken as the
measurement vector. It is assumed that measurement vector
is corrupted by zero mean Gaussian noise.

In this paper the computational efficiency of the algorithm
is checked by considering parametric errors. In order to check
accuracy of both conventional WLS and Kalman filter estima-
tion, Mean Absolute Percentage Error (MAPE) [14] is used.

MAPE ¼ 1

n

Xn

i¼1

Ai � F i

Ai

����

����� 100% ð16Þ

where, Ai is the actual value and Fi is the calculated value.
A smaller value of MAPE indicates more accuracy of the

estimation.

3.1 Case 1: no parametric error

In this case correct values of line impedances are chosen
for estimation purpose.

Figure 2 shows the tracking capability of our estimated
voltages. It has been found that MAPE in voltage for WLS
algorithm is 5.183, but for Kalman filter estimation of voltages
MAPE is 2.9961. Hence, Kalman filter estimation of voltage is
more accurate than traditional WLS algorithm.

On the other hand, from Figure 3 it is observed that in the
case of angle estimation Kalman filter is superior to WLS
technique. MAPE value for traditional WLS is 11.3 while
for Kalman estimation it is found as 2.05.

3.2 Case 2: considering parametric error

In this case it is assumed that bad data is present in the
system. The actual value of bus impedance between bus
4 and 7 is j0.21 ohm but here it is taken as j0.4 ohm.

The comparision of estimation for voltage and angles are
shown in Figures 4 and 5 respectively.

It has been found that WLS and Kalman estimation MAPE
values for voltage estimation are 4.38 and 3.48 respectively. On
the other hand, MAPE values for angle estimations using WLS
and Kalman techniques are 15.22 and 4.2876 respectively.
Since Kalman estimation has less value of MAPE, hence it
is more accurate than WLS estimation.

3.3 Numerical stability of Kalman algorithm

In this paper initial estimate is assumed as a flat start in the
Kalman filter estimation algorithm. The error covariance in the
initial estimates is taken as 0.01. In order to show the stability
of this algorithm error covariance is increased to 50% of its
initial value. The estimation results of voltage and angles for
different set of values of error covariances are shown in
Tables 3 and 4 respectively. It is observed that for both voltage
and angle estimation the values are approximately matching
each other.

3.4 Convergence analysis

In order to check the convergence ability of Kalman
algorithm bus 2 voltage is chosen. The initial estimate of bus
2 voltage is 1 p.u. and its actual value is 1.05 p.u.

Table 1. Real and reactive power flow.

From bus To bus Power flow (p.u)

Real Reactive

1 2 1.571 �0.175
1 5 0.755 �0.0798
2 3 0.734 0.059
2 4 0.559 0.029
2 5 0.417 0.0473
3 4 �0.231 0.077
4 5 �0.595 0.116
4 7 0.271 �0.154

Table 2. Real and reactive power flow.

Bus no Voltage (p.u) Angle (degree) Power injection
(p.u)

Real Reactive

1 1.060 0 2.326 �0.152
2 1.045 �4.9891 0.183 0.352
3 1.010 �12.7492 �0.942 0.088
4 1.0132 �10.2420 �0.478 0.039
5 1.0166 �8.7601 �0.076 �0.016
6 1.0700 �14.4469 �0.112 0.155
7 1.0457 �13.2368 �0.000 0.000
8 1.0800 �13.2368 0.000 0.210
9 1.0305 �14.8201 �0.295 �0.166

10 1.0299 �15.0360 �0.090 �0.058
11 1.0461 �14.8581 �0.035 �0.018
12 1.0533 �15.2937 �0.061 �0.016
13 1.0466 �15.3313 �0.135 �0.058
14 1.0193 �16.0717 �0.149 �0.050

Figure 1. IEEE 14 bus test system [17].
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Figure 2. Comparision of estimated bus voltages.

Figure 4. Comparision of bus voltages, Z47 = j0.4 ohm.

Figure 3. Comparision of estimated bus angles.
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Table 3. Kalman filter voltage estimation for different values of initial error covariance matrix.

Bus no True value (p.u.) Kalman result (p.u.)

P = 0.09 P = 0.11 P = 0.13 P = 0.15

1 1.060 1.043 1.045 1.045 1.046
2 1.045 1.057 1.055 1.059 1.060
3 1.010 1.059 1.060 1.061 1.062
4 1.013 1.054 1.055 1.056 1.056
5 1.017 1.049 1.050 1.051 1.051
6 1.070 1.097 1.098 1.099 1.099
7 1.046 1.083 1.084 1.085 1.085
8 1.080 1.115 1.116 1.116 1.117
9 1.031 1.067 1.068 1.069 1.069

10 1.030 1.067 1.065 1.068 1.069
11 1.046 1.078 1.079 1.080 1.081
12 1.053 1.087 1.088 1.089 1.089
13 1.047 1.082 1.082 1.083 1.084
14 1.019 1.064 1.065 1.065 1.066

MAPE 3.24 3.26 3.37 3.42
WLS MAPE = 5.183

Table 4. Kalman filter angle estimation for different values of initial error covariance matrix.

Bus no True value (degree) Kalman result (degree)

P = 0.09 P = 0.11 P = 0.13 P = 0.15

1 0.00 0 0.00 0.00 0.00
2 �4.99 �5.16 �5.16 �5.15 �5.15
3 �12.75 �12.96 �12.95 �12.93 �12.92
4 �10.25 �10.61 �10.60 �10.59 �10.59
5 �8.76 �9.16 �9.15 �9.15 �9.15
6 �14.45 �13.90 �13.90 �13.90 �13.90
7 �13.24 �13.12 �13.11 �13.11 �13.11
8 �13.24 �13.01 �13.00 �12.99 �12.99
9 �14.83 �14.55 �14.53 �14.53 �14.53

10 �15.04 �14.89 �14.87 �14.87 �14.87
11 �14.86 �14.65 �14.64 �14.63 �14.64
12 �15.31 �14.90 �14.90 �14.90 �14.90
13 �15.34 �15.25 �15.24 �15.24 �15.25
14 �16.08 �16.17 �16.16 �16.15 �16.16

MAPE 2.12 2.13 2.11 2.09
WLS MAPE = 11.3

Figure 5. Comparision of bus angles, Z47 = j0.4 ohm.
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Figure 6 shows the estimated values of voltage at bus 2 for
successive samples. It has been observed that for successive
samples the error in Kalman estimation is lesser than that of
traditional WLS technique.

4 Conclusion

In this paper a comparative study has been done between
WLS technique and Kalman filter algorithm for static state
estimation of power system. Simple power system dynamic
equation and measurement model are considered in order to
implement this algorithm. Algorithms are tested on IEEE 14
bus system and it is found that Kalman filter has better estima-
tion quality than WLS algorithm. The results presented in this
paper prove that for the presence of parametric error also
Kalman estimation outperform traditional WLS estimation.

From the results it can be concluded that in the face of
errors in initial estimates, Kalman algorithm is numerically
stable. The benefit of Kalman estimation is that this method
has the ability to estimate more accurately than conventional
WLS technique and it has better convergence characteristics.
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Figure 6. Convergence of voltage at bus 2.
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