Open Access
Issue
Int. J. Simul. Multisci. Des. Optim.
Volume 7, 2016
Article Number A3
Number of page(s) 13
DOI https://doi.org/10.1051/smdo/2016002
Published online 26 February 2016
  1. Yuge K, Iwai N, Kikuchi N. 1999. Optimization of 2-D structures subjected to nonlinear deformation using the homogenization method. Struct. Optim., 17, 286–299. [CrossRef] [Google Scholar]
  2. Buhl T, Pedersen CBW, Sigmund O. 2000. Stiffness design of geometrically nonlinear structures using topology optimization. Struct. Multidiscip. Optim., 19, 93–104. [CrossRef] [Google Scholar]
  3. Gea HC, Luo J. 2001. Topology optimization of structures with geometrical nonlinearities. Comput. Struct., 79, 1977–1985. [CrossRef] [Google Scholar]
  4. Kemmler R, Lipka A, Ramm E. 2005. Large deformations and stability in topology optimization. Struct. Multidiscip. Optim., 30, 459–476. [CrossRef] [MathSciNet] [Google Scholar]
  5. Bruns TE, Tortorelli DA. 2001. Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng., 190(26–27), 3443–3459. [CrossRef] [Google Scholar]
  6. Huang X, Xie XM. 2008. Topology optimization of nonlinear structures under displacement loading. Eng. Struct., 30, 2057–2068. [CrossRef] [Google Scholar]
  7. Kreisselmeier G, Steinhauser R. 1979. Systematic control design by optimizing a vector performance index, International Federation of Active Controls Symposium on Computer-Aided Design of Control Systems, Zurich, Switzerland. [Google Scholar]
  8. Bruns TE, Tortorelli DA. 2003. An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int. J. Numer. Meth. Eng., 57, 1413–1430. [CrossRef] [Google Scholar]
  9. Yoon GH, Kim YY. 2005. Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int. J. Solids Struct., 42, 1983–2009. [CrossRef] [Google Scholar]
  10. Lahuerta RD, Oes ETS, Campello EMB, Pimenta PM, Silva ECN. 2013. Towards the stabilization of the low density elements in topology optimization with large deformation. Comput. Mech., 52, 779–797. [CrossRef] [MathSciNet] [Google Scholar]
  11. Wang F, Lazarov BS, Sigmund O, Jensen JS. 2014. Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput. Methods Appl. Mech. Eng., 276, 453–472. [CrossRef] [MathSciNet] [Google Scholar]
  12. Cho S, Kwak J. 2006. Topology design optimization of geometrically non-linear structures using meshfree method. Comput. Methods Appl. Mech. Eng., 195, 5909–5925. [CrossRef] [MathSciNet] [Google Scholar]
  13. He Q, Kang Z, Wang YQ. 2014. A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation. Comput. Mech., 54, 629–644. [CrossRef] [MathSciNet] [Google Scholar]
  14. Ha SH, Cho S. 2008. Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh. Comput. Struct., 86, 1447–1455. [CrossRef] [Google Scholar]
  15. Xia Q, Shi T, Liu S, Wang MY. 2012. A level set solution to the stress-based structural shape and topology optimization. Comput. Struct., 90–91, 55–64. [CrossRef] [Google Scholar]
  16. Bathe KJ. 2004. Finite element procedures. Prentice Hall: Upper Saddle River, New Jersey. [Google Scholar]
  17. Reddy JN. 2004. An introduction to nonlinear finite element analysis. Oxford University Press: Oxford. [CrossRef] [Google Scholar]
  18. Yang RJ, Chahande AI. 1995. Automotive applications of topology optimization. Struct. Optim., 9, 245–249. [CrossRef] [Google Scholar]
  19. Akgun MA, Haftka RT, Wu KC, Walsh JL, Garcelon JH. 2001. Efficient structural optimization for multiple load cases using adjoint sensitivities, AIAA J., 39, 511–516. [CrossRef] [Google Scholar]
  20. Poon NMK, Martins JRRA. 2007. An adaptive approach to constraint aggregation using adjoint sensitivity analysis. Struct. Multidiscip. Optim., 34, 61–73. [CrossRef] [Google Scholar]
  21. Luo YJ, Wang MY, Kang Z. 2013. An enhanced aggregation method for topology optimization with local stress constraints. Comput. Methods Appl. Mech. Eng., 254, 31–41. [CrossRef] [MathSciNet] [Google Scholar]
  22. Raspanti CG, Bandoni JA, Biegler LT. 2000. New strategies for flexibility analysis and design under uncertainty. Comput. Chem. Eng., 24, 2193–2209. [CrossRef] [Google Scholar]
  23. Allaire G, Jouve F, Toader AM. 2004. Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys., 194, 363–393. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  24. Wang MY, Wang XM. 2004. PDE-driven level sets, shape sensitivity and curvature flow for structural topology optimization. CMES-Comput. Model. Eng. Sci., 6, 373–395. [Google Scholar]
  25. Xia Q, Wang MY, Shi TL. 2014. A level set method for shape and topology optimization of both structure and support of continuum structures. Comput. Methods Appl. Mech. Eng., 272, 340–353. [CrossRef] [MathSciNet] [Google Scholar]
  26. Xia Q, Wang MY, Shi TL. 2015. Topology optimization with pressure load through a level set method. Comput. Methods Appl. Mech. Eng., 283, 177–195. [CrossRef] [MathSciNet] [Google Scholar]
  27. Nocedal J, Wright SJ. 1999. Numerical optimization. Springer: New York. [CrossRef] [MathSciNet] [Google Scholar]
  28. Rozvany GIN. 2001. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct. Multidiscip. Optim., 21, 90–108. [CrossRef] [Google Scholar]
  29. Sethian JA. 1999. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 2nd edn. Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press: Cambridge, UK. [Google Scholar]
  30. Osher S, Fedkiw R. 2002. Level set methods and dynamic implicit surfaces. Springer-Verlag: New York. [Google Scholar]
  31. Peng DP, Merriman B, Osher S, Zhao HK, Kang M. 1999. A PDE-based fast local level set method. J. Comput. Phys., 155, 410–438. [CrossRef] [MathSciNet] [Google Scholar]
  32. Xia Q, Wang MY, Shi TL. 2013. A move limit strategy for level set based structural optimization. Eng. Optim., 45, 1061–1072. [CrossRef] [MathSciNet] [Google Scholar]
  33. Xia Q, Shi T, Liu S, Wang MY. 2013. Shape and topology optimization for tailoring stress in a local region to enhance performance of piezoresistive sensors. Comput. Struct., 114–115, 98–105. [CrossRef] [Google Scholar]
  34. Allaire G, Dapogny C, Frey P. 2014. Shape optimization with a level set based mesh evolution method. Comput. Methods Appl. Mech. Eng., 282, 22–53. [CrossRef] [MathSciNet] [Google Scholar]
  35. Michell AGM. 1904. The limits of economy of material in frame-structures. Phil. Mag., 8, 589–597. [CrossRef] [Google Scholar]
  36. Hemp WS. 1973. Michell’s structural continua, in Optimum Structures. Clarendon Press: Oxford, Ch. 4. [Google Scholar]
  37. Xie YM, Steven GP. 1993. A simple evolutionary procedure for structural optimization. Comput. Struct., 49, 885–896. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.