Open Access
Issue
Int. J. Simul. Multisci. Des. Optim.
Volume 7, 2016
Article Number A2
Number of page(s) 16
DOI https://doi.org/10.1051/smdo/2016003
Published online 16 February 2016
  1. Trefz JL Jr. 2003. From persistent ISR to precision strikes: the expanding role of UAVS, LCDR, US Navy, Navy War College: Newport, RI. [Google Scholar]
  2. Mittal S, Deb K. 2007. Three-dimensional offline path planning for UAVs using multiobjective evolutionary algorithms. Indian Institute of Technology: Kanpur, India. [Google Scholar]
  3. McGee TG, Spry S, Hedrick K. 2005. Optimal path planning in a constant wind with a bounded turning rate. Center for Collaborative Control for Unmanned Vehicles, University of California: Berkeley, CA. [Google Scholar]
  4. McGee TG, Hedrick K. 2007. Optimal path planning with a kinematic airplane model. Journal of Guidance, Control, and Navigation, 30(2), 629–633. [CrossRef] [Google Scholar]
  5. Bestaoui Y, Dahmani H, Belharet K. 2009. Geometry of translational trajectories for an autonomous aerospace vehicle with wind effect, in 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FA. [Google Scholar]
  6. Shapira I, Ben-Asher JZ. 1997. Near-optimal horizontal trajectories for autonomous air vehicles. Journal of Guidance, Control, and Navigation, 20(4), 735–741. [CrossRef] [Google Scholar]
  7. Erzberger H, Lee H. 1971. Optimum horizontal guidance techniques for aircraft. Journal of Aircraft, 8(2), 95–101. [CrossRef] [Google Scholar]
  8. Tsitsiklis JN. 1995. Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control, 40(9), 1528–1538. [Google Scholar]
  9. McManus IA, Walker RA. 2006. Multidisciplinary approach to intelligent unmanned-airborne-vehicle mission planning. Journal of Aircraft, 43(2), 318–335. [CrossRef] [Google Scholar]
  10. Fahroo F, Ross IM. 2002. Direct trajectory optimization by a Chebyshev pseudospectral method. Journal of Guidance, Control, and Dynamics, 25(1), 3860–3864. [CrossRef] [Google Scholar]
  11. Dogan A. 2003. Probabilistic path planning for UAVs, in 2nd AIAA “Unmanned Unlimited” Systems, Technologies, and Operations, San Diego, CA. [Google Scholar]
  12. Lennon JA, Atkins EM. 2004. Optimal path-planning with behavior based cost definition, in AIAA 1st Intelligent Systems Technical Conference, Chicago, IL. [Google Scholar]
  13. Amin JN, Boskovic JD, Mehra RK. 2006. A fast and efficient approach to path planning for unmanned vehicles, in AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO. [Google Scholar]
  14. Geiger BR, Horn JF, DeLullo AM, Long LN. 2006. Optimal path planning of UAVs using direct collocation with nonlinear programming, in AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO. [Google Scholar]
  15. Geiger BR, Horn JF. 2009. Neural network based trajectory optimization for unmanned aerial vehicles, in 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FA. [Google Scholar]
  16. Narayan P, Campbell D, Walker R. 2008. Multi-objective UAS flight management in time constrained low altitude local environments, in 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV. [Google Scholar]
  17. Yokoyama N, Ochi Y. 2008. Optimal path planning for skid-to-turn unmanned aerial vehicle, in AIAA Guidance, Navigation, and Control Conference and Exhibit, Honolulu, Hawaii. [Google Scholar]
  18. Rippel E, Bar-Gill A, Shimkin N. 2005. Fast graph-search algorithms for general aviation flight trajectory generation. Technion - Israel Institute of Technology: Israel. [Google Scholar]
  19. Chang W, Hsiao F, Sheu D. 2006. Two-point flight path planning using a fast graph-search algorithm. Journal of Aerospace Computing, Information, and Communication, 3, 453–488. [CrossRef] [Google Scholar]
  20. Schwartzentruber L, Foo JL, Winer EH. 2008. Three-dimensional multi-objective UAV path planner using meta-paths for decision making and visualization, in 12th AAIA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, British Columbia, Canada. [Google Scholar]
  21. Miele A, Lee YL, Wu GD. Optimal trajectories for an aerospace plane, part 1: formulation, results, and analysis, Aero-Astronautics Report No. 247, Rice University, 1990. [Google Scholar]
  22. Chieng W-Y. 2007. The study of flight path planning for multiple target visitations, Dissertation. Aeronautics & Astronautics, etd-0613107-115826. [Google Scholar]
  23. Frazzoli E, Dahleh MA, Feron E. 2002. Real-time motion planning for agile autonomous vehicles. Journal of Guidance, Control, and Navigation, 25(1), 1–48. [CrossRef] [Google Scholar]
  24. Pongpunwattana A, Rysdyk R. 2004. Real-time planning for multiple autonomous vehicles in dynamic uncertain environments. University of Washington: Seattle, WA. [Google Scholar]
  25. Richards N, Sharma N, Ward D. 2002. A hybrid A*/automaton approach to on-line path planning with obstacle avoidance, in AIAA 1st Intelligent Systems Technical Conference, Chicago IL. [Google Scholar]
  26. Howlett JK, McLain TW, Goodrich MA. 2006. Learning real-time A* path planner for unmanned air vehicle target sensing. Journal of Aerospace Computing, Information, and Communication, 3, 1–22. [CrossRef] [Google Scholar]
  27. Rathbun D, Capozzi B. 2003. Evolutionary approaches to path planning through uncertain environments, in AIAA’s 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles, Portsmouth, VA. [Google Scholar]
  28. Pettit RL, Homer ML. 2004. An autonomous threat evasion response algorithm for unmanned air vehicles during low altitude flight, in AIAA 1st Intelligent Systems Technical Conference, Chicago, IL. [Google Scholar]
  29. Geyer MS, Johnson EN. 2006. 3D obstacle avoidance in adversarial environments for unmanned aerial vehicles, in AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO. [Google Scholar]
  30. Kabamba PT, Meerkov SM, Zeitz FH III. 2006. Optimal path planning for unmanned combat aerial vehicles to defeat radar tracking. Journal of Guidance, Control, and Navigation, 29(2), 279–288. [CrossRef] [Google Scholar]
  31. Park JB, Vorsmann P. 2007. Strategies for the implementation of a sense and avoid system for unmanned air vehicles, in 3rd US-European Competition and Workshop on Micro Air Vehicle Systems & European Micro Air Vehicles, Conference and Flight Competition, Toulouse, France. [Google Scholar]
  32. Tooren J, Heni M, Knoll A, Beck J. 2007. Development of an autonomous avoidance algorithm for UAVs in general airspace, EADS Defense & Security, Military Air Systems: Munich, Germany. [Google Scholar]
  33. Jorris TR, Cobb RG. 2008. Multiple method 2-D trajectory optimization satisfying waypoints and No-Fly zone constraints. Journal of Guidance, Control, and Dynamics, 31(3), 543–553. [CrossRef] [Google Scholar]
  34. Zengin U, Dogan A. 2004. Dynamic target pursuit by UAVs in probabilistic threat exposure map, in AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit, Chicago IL. [Google Scholar]
  35. Caveney DK, Hedrick JK. 2005. Path planning for targets in close proximity with a bounded turn-rate aircraft, in AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco CA. [Google Scholar]
  36. Maj. Burns BS, Blue PA, Capt. Zollars MD. 2007. Simulation of real-time trajectory generator for automated aerial refueling with a required time of arrival, in AIAA Modeling and Simulation Technologies Conference and Exhibit, Hilton Head SC. [Google Scholar]
  37. Sattigeri RJ, Johnson E, Calise AJ, Ha J. 2007. Vision-based target tracking with adaptive target state estimator, in AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head SC. [Google Scholar]
  38. Cloutier JR, Lin CF, Yang C. 1993. Maneuvering target tracking via smoothing and filtering through measurement concatenation. Journal of Guidance, Control, and Dynamics, 16(2), 377–384. [CrossRef] [Google Scholar]
  39. Han JD, Campbell M. 2003. Artificial potential guided evolutionary path plan for target pursuit and obstacle avoidance, in AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin TX. [Google Scholar]
  40. Larson RA, Mears MJ, Maj. Blue PA. 2005. Path planning for unmanned air vehicles to goal states in operational environments, in AIAA Infotech@Aerospace, Arlington VA. [Google Scholar]
  41. Ousingsawat J, Campbell ME. 2004. On-line estimation and path planning for multiple vehicles in an uncertain environment. International Journal of Robust and Nonlinear Control, 14(8), 741–756. [CrossRef] [MathSciNet] [Google Scholar]
  42. Harl N. 2008. Coordinated rendezvous of unmanned air vehicles to a formation: a sliding mode approach, in AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii. [Google Scholar]
  43. Bollino KP, Lewis LR. 2008. Collision-free multi-UAV optimal path planning and cooperative control for tactical applications, in AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii. [Google Scholar]
  44. Boissonnat JD, Cerezo A, Leblond J. 1994. Shortest paths of bounded curvature in the plane. Journal of Intelligent and Robotic Systems, 11, 5–20. [CrossRef] [Google Scholar]
  45. Mahmoudian N, Woolsey CA, Geisbert J. 2007. Steady turns and optimal paths for underwater gliders, in AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, SC. [Google Scholar]
  46. Foo JL, Knutzon JS, Oliver JH, Winer EH. 2007. Three-dimensional multi-objective path planning of unmanned aerial vehicles using particle swarm optimization, in AIAA/ASME/ASCE/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii. [Google Scholar]
  47. Swartzentruber L, Foo JL, Winer EH. 2009. Three-dimensional multi-objective UAV path planner using terrain information, in AIAA/ASME/ASCE/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA. [Google Scholar]
  48. Whitfield CA. An adaptive dual-optimal path-planning technique for unmanned air vehicles with applications to solar-regenerative high altitude long endurance flight, Dissertation, The Ohio State University, Columbus, OH, 2009. [Google Scholar]
  49. Weider S. 1982. An introduction to solar energy for scientists and engineers. John Wiley & Sons, New York. [Google Scholar]
  50. Strganac TW. Wind study for high altitude platform design, NASA-RP-1044, N80-12661, 1979. [Google Scholar]
  51. Pearson J, Gregorek GM, Whitfield CA. High altitude morphing aircraft (HAMAC). AFRL-VA-WP-TR-2007-XXX– Final Report to USAF for Phase I Small Business Initiative, 2007. [Google Scholar]
  52. Alemayehu D, Eaton E, Faruque I. 2004. HALE UAV: aerovironment pathfinder: aerodynamic and stability analysis, case-study: planform optimization. http://www.aoe.vt.edu/~mason/Mason_f/pathfinder.pdf [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.