Open Access
Issue
Int. J. Simul. Multisci. Des. Optim.
Volume 5, 2014
Article Number A23
Number of page(s) 9
DOI https://doi.org/10.1051/smdo/2014003
Published online 08 July 2014
  1. Chang CE, Wilcox WR. 1974. Control of interface shape in the vertical Bridgman-Stockbarger technique. Journal of Crystal Growth, 21, 135–140. [CrossRef] [Google Scholar]
  2. Sen S, Wilcox WR. 1975. Influence of crucible on interface shape, position and sensitivity in the vertical Bridgman-Stockbarger technique. Journal of Crystal Growth, 28, 26–40. [Google Scholar]
  3. Fu T-W, Wilcox WR. 1980. Influence of insulation on stability of interface shape and position in the vertical Bridgman-Stockbarger technique. Journal of Crystal Growth, 48, 416–424. [CrossRef] [Google Scholar]
  4. Naumann RJ. 1982. An analytical approach to the thermal modeling of Bridgman-type crystal growth. II. Two-dimensional analysis. Journal of Crystal Growth, 58, 569–584. [CrossRef] [Google Scholar]
  5. Naumann RJ, Lehoczky SL. 1983. Effect of variable thermal conductivity on isotherms in Bridgman growth. Journal of Crystal Growth, 61, 707–710. [CrossRef] [Google Scholar]
  6. Adornato P, Brown RA. 1987. Convection and segregation in directional solidification of dilute and non-dilute binary alloys: effects of ampoule and furnace design. Journal of Crystal Growth, 80, 155–190. [CrossRef] [Google Scholar]
  7. Wang CA, Witt AF, Carruthers JR. 1984. Analysis of crystal growth characteristics in a conventional vertical Bridgman configuration. Journal of Crystal Growth, 66, 299–308. [CrossRef] [Google Scholar]
  8. Jasinski T, Witt AF. 1985. On control of the crystal melt interface shape during growth in a vertical Bridgman configuration. Journal of Crystal Growth, 71, 295–304. [CrossRef] [Google Scholar]
  9. Jasinski T, Witt AF, U.S. Patent: Apparatus for Growing Crystals, 1986. [Google Scholar]
  10. El Ganaoui M, Lamazouade A, Bontoux P. 2002. Computational solution for fluid flow under solid/liquid phase change conditions. Computers & Fluids, 31, 539–556. [CrossRef] [Google Scholar]
  11. Crank IJ. 1984. Free and moving boundary problems. Clarendon Press: Oxford, UK. [Google Scholar]
  12. Voller R, Prakash C. 1987. A fixed grid numerical modelling methodology for convection diffusion mushy region phase change problems. International Journal of Heat and Mass Transfer, 30(8), 1709–1719. [Google Scholar]
  13. Bennon WD, Incropera FP. 1987. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems: 1. Model formulation. International Journal of Heat and Mass Transfer, 30(10), 2161–2170. [CrossRef] [Google Scholar]
  14. Voller R, Cross M. 1980. Accurate solutions of moving boundary problems using the enthalpy method. International Journal of Heat and Mass Transfer, 24, 545–556. [CrossRef] [Google Scholar]
  15. El Ganaoui M. Modélisation numérique de la convection thermique instationnaire en présence d’un front de solidification déformable. Thèse de l’Université d’Aix-Marseille, Octobre, 1997. [Google Scholar]
  16. El Ganaoui M, Mazhorova OS, Bontoux P. 2000. Computer simulation of pure and alloys melt growth. Microgravity Quart Rev, 7(4), 171–178. [Google Scholar]
  17. Elganaoui M, Bontoux P, Morvan D. 1999, Localisation d’un front de solidification en interaction avec un bain fondu instationnaire, Paris: CR Acad Sciences, Série II b, t. 327, p. 41–48. [Google Scholar]
  18. Sen S, Konkel WH, Tighe SJ, Bland LG, Sharma SR, Taylor RE. 1988. Crystal growth of large-area single-crystal CdTe and CdZnTe by the computer-controlled vertical modified-Bridgman process. Journal of Crystal Growth, 86, 111. [CrossRef] [Google Scholar]
  19. Bruder M, Figgemeier H, Schmitt R, Maier H. 1993. Mat. Res. Eng. B, 16, 40. [CrossRef] [Google Scholar]
  20. Kuppurao S, Brandon S, Derby JJ. 1995. Journal of Crystal Growth, 155, 93. [CrossRef] [Google Scholar]
  21. MATLAB. The Language of Technical Computing – Programming Version 7, MA, USA: The Mathworks, Inc, 2005 [Google Scholar]
  22. Marchenko MP, Golyshev VD, Bykova SV. 2007. Investigation of Cd1-xZnxTe composition inhomogeneity at crystal growth by AHP-method. Journal of Crystal Growth, 303, 193–198. [CrossRef] [Google Scholar]
  23. Huang ZH, Conway PP, Thomson RC, Dinsdale AT, Robinson JAJ. 2008. A computational interface for thermodynamic calculations software MTDATA. Computer Coupling of Phase Diagrams and Thermochemistry, 32, 129–134. [CrossRef] [Google Scholar]
  24. Bruder M, Figgemeier H, Schmitt R, Maier H. 1993. Mat. Res. Eng. B, 16, 40. [CrossRef] [Google Scholar]
  25. Fang HS, Wang S, Zhou L, Zhou NG, Lin MH. 2012. Influence of furnace design on thermal stress during directional solidification of multicristalline silicon. Journal of Crystal Growth, 346, 5–11. [CrossRef] [Google Scholar]
  26. Cerny C, Kalbac A, Prikryl P. 2000. Computational modeling of CdZnTe crystal growth from the melt. Computational Materials Science, 1734–1760. [Google Scholar]
  27. Zhang N, Yeckel A, Derby JJ. 2012. Maintaining convex interface shapes during electrodynamic gradient freeze growth of cadmium zinc telluride using a dynamic, bell-curve furnace profile. Journal of Crystal Growth, 355, 113–121. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.