Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 4, Number 2, April 2010
Page(s) 85 - 100
Published online 21 July 2011
  1. L.M.W. Almeida. Desenvolvimento de una Metodologia para Analise Locacional de Sistemas Educacionais Usando Modelos de Interação Espacial e Indicadores de Acessibilidade, Ph. D. thesis (Doutorado em Engenharia de Produção) - Programa de Pos-Graduação em Engenharia de Produção, Universidade Federal de Santa Catarina, Florianopolis, Brazil, (1999).
  2. L.M.W. Almeida, M.B. Gonçãlves. A methodology to incorporate behavioral aspects in trip distribution models with and application to estimate student flow, Environment and Planning, A 33 (6), 1125-1138, (2001).
  3. M.J . baxter, G.O. Ewing. Calibration of Production - Constrained Trip Distribution Models and The Effect of Intervening Opportunities, Journal Regional Science 19 (3), 319-330, (1979).
  4. M.S. Bazaraa, H.D. Sherali, C.M. Shetty. Nonlinear Programming - theory and algorithms, 2 ed. New York: John Wiley 1 Sons (1993)
  5. M. Ben-Akiva, S.R. Lerman. Discrete Choice analysis: Theory and Application to travel Demand, the MIT Press, Cambridge, Massachusetts, (1985).
  6. E.T. Bez. Procedimento de representação de soluéoes em otimização global: aplicação em modelos de interação espacial, Ph. D. Thesis (Doutorado em Engenharia de Produção) - Programa de Pos-Graduação em Engenharia de Produção, Universidade federal de Santa Catarina, Florianopolis, Brazil (2005).
  7. E.T. Bez, J.E. Souza de Cursi, M.B. Gonçãlves. Procedimento de Representação em Otimização Global, XXVI Congresso Nacional de Matematica Aplicada e Computacional, 2003, Sao José do Rio Preto. Resumos das Comunicaçãoes do XXVI CNMAC. Rio de Janeiro: SBMAC 1, 545-545, (2003).
  8. E.T. Bez, J.E. Souza de Cursi, M.B. Gonçãlves. A Hybrid Method for Continuous Global Optimization Involving the Representation of the Solution, 6th Worl Congress on Structural and Multidisciplinary Optimization - WCSMO6. Rio de Janeiro, RJ, Brazil (2005)
  9. M. Bouhadi, R. Ellaia, J.E. Souza de Cursi. Stochastic perturbation methods for affine restrictions, Hadjisavvas, Nicolas (ed.) et al., Advances in convex analysis and global optimization. Honoring the memory of C. Caratheodory (1873-1950). Dordrecht: Kluwer Academic Publishers. Nonconvex Optim. Appl. 54, 487-499, (2001).
  10. G. Diplock, S. Openshaw. Using Simple Genetic Algorithms to Calibrate Spatial Interaction Models, Geographical Analysis, 28 (3), 262-279, (1996)
  11. R. Ellaia, E. Elmouatasim, J.E. Souza de Cursi. Random Perturbations of variable metric descent in unconstrained nonsmooth nonconvex perturbation, International Journal of Applied Mathematics and Computer Science 16 (4), (2006)
  12. A.S. Fotheringham. A new set of Spatial Interaction Models: the theory of competing destinations, Environment and Planning, A 16, 529-543, (1984).
  13. A.S. Fotheringham. Spatial flows and spatial patterns, Environment and Planning A 16, 529-543, (1984). [CrossRef]
  14. A.S. Fotheringham. Spatial Competition and Agglomeration in Urban Modelling, Environment and Planning A, 17, 213-230, (1985)
  15. J.P. Gitlesen, I. Thorsen, J. Uboe. Misspecifications due to aggregation of data in models for journeys-to-work, Discussion paper 13. NHH: Department of Finance and Management Science (2004).
  16. M.B. Gonçãlves. Desenvolvimento e teste de um novo modelo gravitacional - de oportunidades de distribuição de viagens, Ph D. Thesis (Doutorado em Engenharia de Produção) - Programma de Pos-Graduação em Engenharia de Produção, Universidade federal de Santa Catarina, Florianopolis, Brazil (1992).
  17. M.B. Gonçãlves, I. Ulyssçã Neto. The development of a new gravity - opportunity model for trip distribution, Environment and Planning, 25, 817-826, (1993). [CrossRef]
  18. M.B. Gonçãlves, J.E. Souza de Cursi. Métodos robustos para a Calibração de Modelos de Interação Espacial em Transportes, 11., 1997. Anais... 1997; 2, 303-313, (1997)
  19. M.B. Gonçãlves, J.E. Souza de Cursi. Parameter estimation in a trip distribution model by radom perturbation of a descent method, Transportation Research, 35B, 137-161, (2001)
  20. A.O. Griewank. Generalozed descent for global optimization, Journal of optimization theory and applications, 341, 11-39, (1981)
  21. A.J. Horowitz, D.D. Farmer. A critical review of statewide travel forecasting practice, University of Wisconsin,( ajh/Statewid.pdf), (1998)
  22. N. Kühlkamp. Modelo de oportunidades intervenientes, de distribuição de viagens, com ponderação das posiéoes espaciais relativas das oportunidades, PhD Thesis (Doutorado em Engenharia Civil) Programa de Pos-Graduação em Engenharia Civil, Universidade federal de Santa Catarina, Florianopolis, Brazil (2003)
  23. J.M. Lowe, A. Sen. Gravity model applications in health planning : Analysis of an urban hospital market, Journal of Regional Science, 363, 437-461, (1996)
  24. J.D. Ortuzar, L.G. Willumsen. Modelling transport, John Wiley & Sons, New York (1994)
  25. M. Pincus. A closed formula solution of certain programming problems, Operations Reserach, 163, 690-694, (1968)
  26. M. Pogu, J.E. Souza de Cursi. Global optimization by random perturbation of the gradient method with a fixed parameter, Journal of Global Optimization, 5, 159-180, (1994)
  27. M. Schneider. Gravity models and trip distribution theory, Papers and Proceedings of the Regional Science association 5, 51-56, (1959).
  28. Y.H. Shi, R.C. Eberhart. Empirical study of particle swarm optimization, Congress on Evolutionary Computation, Washington DC, USA, 1945-1950, (1999)
  29. H.P. Schwefel. Evolution and Optimization seeking, New York: Wiley (1995)
  30. E. Sheppard. Theoritical underpinnings of thegravity hypothesis, Geographical Analysis 10 (4), 386-402, (1978).
  31. S. Soot, A. Sen. A spatial employment and economic development model, Papers in regional science, 70(2), 149-166, (1991)
  32. J.E. Souza de Cursi. Une formule de représentation pour le point d'optimum global d'une fonctionnelle régulière en dimension finie, Note de recherche 061/02; LMR, Rouen, France (2002)
  33. J.E. Souza de Cursi. Representation and numerical determination of the global optimizer of a continuous function on a bounded domain, Floudas, Christodoulos A. (ed.) et al., Frontiers in global optimization. Boston, MA: Kluwer Academic Publishers. Nonconvex Optim. Appl. 74, 517-539, (2004)
  34. J.E. Souza de Cursi, R. Ellaia, M. Bouhadi. Global Optimization under nonlinear restrictions by using stochastic perturbations of the projected gradient, Floudas, Christodoulos A. (ed.) et al., Frontiers in global optimization. Boston, MA: Kluwer Academic Publishers. Nonconvex Optim. Appl. 74, 541-561, (2004).
  35. M.J. Wills. A flexible gravity-opportunities model for trip distribution,Transportation Research, 20B, 89-111, (1986)
  36. A.G. Wilson. A statistical theory of spatial distribution models, Transportation Research, 1, 253-269, (1967)
  37. A.G. Wilson. Entropy in urban and regional modelling, London: Pion (1970)
  38. S.C. Wirasinghe, A.S. Kumarage. An aggregate demand model for intercity passenger travel in Sri Lanka, Transportation, 25, 77-98, (1998)
  39. F. Zhao, L.F. Chow, M.T. Li, A. Gan. Refinement of Fsutms trip distribution methodology, final report, Prepared by Lehman Center for Transportation Research, Department of Civil & Environmental Engineering, Florida International University (2004)

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.