Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 3, Number 2, April 2009
Page(s) 347 - 355
DOI https://doi.org/10.1051/ijsmdo/2009010
Published online 24 June 2009
  1. Xie YM, Steven GP, Shape and layout optimization via an evolutionary procedure, Proc. Int. Conf. Comp. Engrg. Hong Kong (1992). [Google Scholar]
  2. Xie YM, Steven GP, Evolutionary Structural Optimization, Springer-Verlag, Berlin, (1997). [Google Scholar]
  3. Xie YM,Steven GP, Optimal design of multiple load case structures using an evolutionary procedure, Engng. Comp. 11, 295-302, (1994). [CrossRef] [Google Scholar]
  4. Xie YM,Steven GP, A simple approach to structure fre-quency optimization, Comp. & Struct., 53, 1487-1491, (1994). [CrossRef] [Google Scholar]
  5. Xie YM,Steven GP, Evolutionary structure optimization for dynamic problems, Comp. & Struct., 58, 1067-1073, (1996). [CrossRef] [Google Scholar]
  6. Rong JH,Xie YM, An improved method for evolutionary structure optimization against buckling, Comp. & Struct., 79, 253-263, (2001). [CrossRef] [Google Scholar]
  7. Querin OM, Evolutionary structure optimization: stress based formulation and implementation. Ph.D. Thesis, University of Sydney, (1997). [Google Scholar]
  8. Querin OM,Young V, Computational efficiency and validation of bi-directional evolutionary structure optimi-zation, Comp. Meth. Appl. Mech. Engrg., 189, 559-573, (2000). [CrossRef] [Google Scholar]
  9. Yang XY,Xie YM,Steven GP, Bidirectional evolutionary method for stiffness optimization, AIAA Journal., 37, 1483-1488, (1999). [CrossRef] [Google Scholar]
  10. Yang XY,Xie YM,Steven GP, Topology optimization for frequency using an evolutionary method, J. Struct. Engnrg., 125, 1432-1438, (1999). [CrossRef] [Google Scholar]
  11. Tanskanen P, The evolutionary structural optimization method: theoretical aspects, Comp. Meth. Appl. Mech. Engrg., 191, 5485-5498, (2002). [CrossRef] [Google Scholar]
  12. Sigmund O, A 99 line topology optimization code written in MATLAB, Struct. Multidisc. Optim., 21, 120-127, (2001). [CrossRef] [Google Scholar]
  13. Zhou M,Rozvany GIN, On the validity of ESO type methods in topology optimization, Struct. Multidisc. Optim., 21, 80-83, (2001). [CrossRef] [MathSciNet] [Google Scholar]
  14. Rozvany GIN, Stress ratio and compliance based me-thods in topology optimization - a critical review, Struct. Multidisc. Optim., 21, 109-119, (2001). [CrossRef] [Google Scholar]
  15. Jog CS,Haber RB, Stability of finite element models for distributed-parameter optimization and topology design, Comp. Meth. Appl. Mech. Engrg., 130, 203-226, (1996). [CrossRef] [Google Scholar]
  16. Rodrigues H,Fernandes P, A material based model for topology optimization of thermoelastic structure, Int. J. Numer. Meth. Engrg., 38, 1951-1965, (1995). [CrossRef] [MathSciNet] [Google Scholar]
  17. Sigmund O,Petersson J, Numerical instabilities in topol-ogy optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. Multidisc. Optim., 16, 68-75, (1998). [CrossRef] [Google Scholar]
  18. Haber RB,Jog CS, BendsœMP, A new approach to variable-topology shape design using a constraint on perimeter, Struct. Multidisc. Optim., 11, 1-12, (1996). [CrossRef] [Google Scholar]
  19. Zhang WH,Duysinx P, Dual approach using a variant perimeter constraint and efficient sub-iteration scheme for topology optimization, Comp. & Struct., 81, 2173-2181, (2003). [CrossRef] [Google Scholar]
  20. Li Q,Steven GP,Xie YM, A simple checkerboard sup-pression algorithm for evolutionary structure optimization, Struct. Multidisc. Optim, 22, 230-239, (2001). [CrossRef] [Google Scholar]
  21. Yang XY,Xie YM, Perimeter control in the bi-direction evolutionary optimization method, Struct. Multidisc. Optim, 24, 430-440, (2003). [Google Scholar]
  22. Zhu JH, Zhang WH, Evolutionary topology optimization of replaceable orthotropic cellular microstructures, Pro-ceedings of International Conference on Mechanical En-gineering and Mechanics, Nanjing, China, October 27-29, (2005). [Google Scholar]
  23. Pedersen NL, Maximization of eigenvalues using topolo-gy optimization, Struct. Multidisc. Optim., 20, 2-11, (2000). [CrossRef] [Google Scholar]
  24. Zhu JH,Zhang WH,Qiu KP, Investigation of localized modes in topology optimization of dynamic structures, Acta Aeronautica et Astronautica Sinica, 27, 619-623, (2006). [Google Scholar]
  25. Wang D,Friswell MI,Li Y, Maximizing the natural fre-quency of a beam with an intermediate elastic support, J. Sound & Vibration, 291, 1229-1238, (2006). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.