Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 3, Number 1, January 2009
Page(s) 297 - 306
DOI https://doi.org/10.1051/ijsmdo/2009002
Published online 26 March 2009
  1. G. Allaire, F. Jouve, A-M. Toader Structural optimi-zation using sensitivity analysis and a level-set me-thod, J Comput Phys 194, 363-393, (2004). [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  2. R. Ansola, J. Canales, A.J. Tárrago An efficient sensi-tivity computation strategy for the evolutionary struc-tural optimization (ESO) of continuum structures sub-jected to self-weight loads, Finite Elements in Analysis and Design 42, 1220-123, (2006). [CrossRef] [Google Scholar]
  3. M.P. Bendsœ Optimal shape design as a material distribution problem, Struct. Optim. 10, 193-202, (1989). [CrossRef] [Google Scholar]
  4. M.P. Bendsœ, Optimization of Structural Topology, Shape, and Material. (Springer, London UK. (1995)). [Google Scholar]
  5. M.P. Bendsœ, N. Kikuchi Generating optimal to-pologies in structural design using homogenization, Comput Methods Appl Mech Eng 71, 197-224, (1988). [CrossRef] [MathSciNet] [Google Scholar]
  6. M.P. Bendsœ, O. Sigmund Material interpolation in topology optimization, Arch Appl Methods 69, 635-654, (1999). [CrossRef] [Google Scholar]
  7. M. Bruyneel, P. Duysinx Note on topology optimiza-tion of continuum structures including self-weight, Struct Multidisc Optim 29, 245-256, (2005). [CrossRef] [Google Scholar]
  8. B.C. Chen, N. Kikuchi Topology optimisation with design dependent loads, Finite Elem Anal Des 39, 57-70, (2001). [CrossRef] [Google Scholar]
  9. J. Du, N. Olhoff Topological optimization of contin-uum structures with design-dependent surface loading - Part I: new computational approach for 2D prob-lems, Struct. Multidisc. Optim 27, 166-177, (2003). [CrossRef] [Google Scholar]
  10. J. Du, N. Olhoff Topological optimization of contin-uum structures with design-dependent surface loading - Part II: algorithm and examples for 3D problems, Struct. Multidisc. Optim 27, 151-165, (2003). [CrossRef] [Google Scholar]
  11. C. Fleury, V. Braibant Structural optimization: A new dual method using mixed variables, Int J Numer Me-thods Eng 23, 409-428, (1986). [CrossRef] [Google Scholar]
  12. M.B. Fuchs, E. Moses Optimal structural topologies with transmissible loads, Struct Multidisc Optim 19, 263-73, (2000). [CrossRef] [Google Scholar]
  13. M.B. Fuchs, N.N.Y. Shemesh Density-based topo-logical design of structures subjected to water pressure using a parametric loading surface, Struct Multidisc Optim 28, 11-19, (2004). [CrossRef] [Google Scholar]
  14. T. Gao, W.H. Zhang, J.H. Zhu, Y.J Xu, D.H. Bassir Topology Optimization of Heat Conduction Problem Involving Design dependent Heat Load Effect, Finite Elements in Analysis and Design 44, 805-813, (2008). [CrossRef] [Google Scholar]
  15. V.B. Hammer, N. Olhoff Topology optimisation of continuum structures subjected to pressure loading, Struct Multidisc Optim 19, 85-92, (2000). [CrossRef] [Google Scholar]
  16. Z. Liu, J.G. Korvink, R. Huang Structure topology optimization: fully coupled level set method via FEM-LAB, Struct Multidisc Optim 29, 407-417, (2005). [CrossRef] [Google Scholar]
  17. G.I.N. Rozvany, W. Prager A new class of structural optimisation problems: optimal archgrids, Comput Methods Appl Mech Eng 19, 49-58, (1979). [CrossRef] [Google Scholar]
  18. O. Sigmund A 99 line topology optimization code written in Matlab, Struct Multidisc Optim 21, 120-127, (2001). [CrossRef] [Google Scholar]
  19. O. Sigmund, P.M. Clausen opology optimization using a mixed formulation: An alternative way to solve pressure load problems, T. Comput Methods Appl Mech Engrg 196, 1874-1889, (2007). [CrossRef] [Google Scholar]
  20. M. Stolpe, K. Svanberg An alternative interpolation scheme for minimum compliance topology optimization, Struct Multidisc Optim 22, 116-124, (2001). [CrossRef] [MathSciNet] [Google Scholar]
  21. S.P. Sun, W.H. Zhang Multiple objective topology optimal design of multiphase microstructures, Chinese Journal of Theoretical and Applied Mechanics 38, 633-638, (2006). [Google Scholar]
  22. K. Svanberg The method of moving asymptotes - a new method for structural optimization, Int J Numer Methods Eng 24, 359-373, (1987). [CrossRef] [Google Scholar]
  23. S. Turteltaub, P. Washabaugh Optimal distribution of material properties for an elastic continuum with structure-dependent body force, Int J Solids Struct 36, 4587-4608, (1999). [CrossRef] [Google Scholar]
  24. X.Y. Yang, Y.M. Xie, G.P. Steven Evolutionary me-thods for topology optimization of continuous struc-tures with design dependent loads, Computers and Structures 83, 956-963, (2005). [CrossRef] [Google Scholar]
  25. W.H. Zhang, C. Fleury A modification of convex ap-proximation methods for structural optimization, Computers & Structures 64, 89-95, (1997). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.