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Abstract – In this paper, design-dependent pressure loads are addressed for topology optimization problems of multiphase 
material structures. The modeling of unidirectional load distribution with respect to the material density is studied and ma-
thematical formulations of exponential form are established for the first time to model unidirectional pressure loads on the 
moving surface and contact surface of fixed shape, respectively. In both load cases, sensitivity analysis scheme of the struc-
tural compliance is developed to show the effects of the design–dependent loads. By means of 2D and 3D numerical exam-
ples, comparative studies are performed in detail to show the effects of different load cases upon the optimal configurations. 
It is seen that the proposed design procedure is reliable to deal with the design-dependent load cases. 
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1 Introduction 
Here starts the main part of the paper. You can finish your 
paper first and then copy all your texts, figures and tables 
into this template. And the “Format brush” in MS-Word 
may be helpful. 

This paragraph shows how to use some references. With-
in this scope, optimal support locations were found by 
Rozvany [1], Mroz and Rozvany [2], Prager and Rozvany 
[3], Szelag and Mroz [4] to improve elastic and plastic re-
sponses of beams. Likewise, Rozvany and Mroz [5], Olhoff 
and Taylor [6], Olhoff and Akesson [7] discussed the col-
umn support optimization for buckling load maximization. 

In recent years, various optimization models and meth-
ods have been presented to address the structural design 
problems. Among others, topology optimization is an ad-
vanced research topic. It could be considered as a 0-1 dis-
crete problem. The basic approach is to transform the dis-
crete problem into a continuous one, such as the homogeni-
zation method (Bendsøe and Kikuchi [5]), the SIMP (Solid 
Isotropic Material with Penalization) method (Bendsøe [3], 
Bendsøe and Sigmund [6]) and the RAMP (Rational Ap-
proximation of Material Properties) method (Stolpe and 
Svanberg [20]). Nevertheless, the considered problems are 
mostly limited to fixed load conditions. Namely, whatever 
the variation of the structural configuration is, the applied 
loads remain unchanged. In practice, many structures need 
to be designed for optimal configurations under such a type 
of load that changes with respect to the material layout, i.e., 
the so-called design-dependent load (Chen and Kikuchi, 
[8]). 

By definition, the design-dependent loads are those 
whose values, locations or directions depend upon the 
structure itself. Here, it is necessary to highlight two points. 
Firstly, as the loads vary during the design iteration process, 

a proper load model is needed for their updating in terms of 
design variables. Secondly, when the objective function to 
be minimized is still defined as the structural compliance, 
the sensitivity of the latter will change its sign instantly 
during the optimization iteration due to the effect of the 
design-dependent loads so that the objective function is no 
longer a decreasing monotonic function. This implies that 
more material might make the structure less rigid. Instead, 
the sensitivity is always negative under fixed load condi-
tions, i.e., more materials, more rigid the structure. To clar-
ify the discussion, considered design-dependent loads are 
classified in the following presentation.  

 
(a) Model and boundary condition 

  
(b) Optimal result of  

Fuchs and Moses [12] 
(c) Optimal result of  

Yang et al. [24] 
Fig. 1 Optimal results related to transmissible loads 

 “Transmissible” or “sliding” loads: To the authors’ 
knowledge, “transmissible” or “sliding” loads might be the 
design-dependent loads that were firstly investigated in the 
work of Rozvany and Prager [17]. According to Fuchs and 
Moses [12], a transmissible force is a force of given magni-
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tude and direction which can be applied at any point along 
the action line of the force. As illustrated in Fig. 1(a), each 
force attached to the universe structure is movable verti-
cally. Fuchs and Moses [12] studied the topology optimiza-
tion of structures under transmissible loads and the so-
called “Prager structure” is obtained. Likewise, Yang et al. 
[24] solved this problem with ESO/BESO (Evolutionary 
Structural Optimization and Bi-direction Evolutionary 
Structural Optimization) method. As shown in Fig. 1, simi-
lar optimal results are obtained with the height-to-length 
ratio being 0.479 and 0.48, respectively whereas the ana-
lytical solution obtained by Rozvany and Prager [17] has a 
height-to-length ratio of 0.43.  

 
 

(a) Model and boundary condi-
tion 

(b) MP 

  
(c) ESO (0.115) (d) ESO with modified sen-

sitivity (0.113) 
Fig. 2 Optimal results of arch structure under self-weight 

load (Ansola et al. [2]) 

Body force: This includes inertial load (e.g., structural 
self-weight, translational inertial load and centrifugal load) 
and heat generation rate of the thermal problem. In struc-
tural topology optimization, the location and direction of 
body force usually keep fixed whereas the magnitude will 
vary with the addition and deletion of materials in the op-
timization process. In other words, no material, no load. 
Bruyneel and Duysinx [7] investigated the topology opti-
mization of structures under self-weight loading with SIMP 
and different MMA (Method of Moving Asymptotes) ap-
proximation schemes.  Yang et al. [24] applied the 
ESO/BESO method to solve the same problem. In the work 
of Ansola et al. [2], obtained solutions are found to be not 
exactly the same. As shown in Fig. 2, under the self-weight 
loading, the MP method produces an arch-like structure, 
whereas the ESO method gives rise to a more compliant 
solution for which two columns are generated at both sides 
on the top of supports and joined together with a slender 
arch. For this reason, Ansola et al. [2] introduced the vol-
ume constraint to modify the sensitivity formula, so that the 
improved result agrees well with that obtained by the MP 
method as observed in Fig. 2(d). Besides, combined cen-
trifugal and external loads were addressed by Turteltaub 
and Washabaugh [23] to show the influence of relative 
magnitude of both loads on the optimal design of the rotat-
ing prismatic structure. The heat generation rate was inves-
tigated by Gao et al. [14] for topology optimization of the 
steady heat conduction problem with the BESO method. It 

is necessary to notice that the material removal will reduce 
the body force and in the limit case the design problem will 
become singular when the structure is only solicited by the 
body force. 

Surface contact pressure load: The pressure load is char-
acterized by the applied surface, load magnitude and load 
direction. Here, two cases of surface pressure loads are 
considered: 

Case 1: Unidirectional pressure load on contact surface 
of fixed shape. This type of load is applied on a loading 
surface of specific shape. The surface contact area may 
change and the load will be redistributed in the design 
process while the amount of total load remains constant 
and the loading direction is unchanged during the topology 
optimization. The typical example is the design of a load 
support structure pressured by a rigid object.  

Case 2: Unidirectional pressure load on moving surface: 
The difference between this type of load and the preceding 
one lies in that the pressure load follows the variation of 
the loading surface being designed during the structural 
optimization while the load magnitude and the direction 
remain unchanged. The typical example is the snow weight 
pressure acting on a civil structure. Note that the hydro-
static pressure load is similar but the loading direction is 
always normal to the loading surface. 

Until now，existing work has been mainly focused on 
the hydrostatic pressure load and the unidirectional pres-
sure load on moving surface. Few works are found on the 
pressure load of Case 1. Bendsøe [4] studied the simultane-
ous optimization of the structure topology and shape under 
the hydrostatic pressure load and the structure was re-
meshed after each iteration. The same problem was ad-
dressed by Hammer and Olhoff [15], Du and Olhoff [9-10] 
who used the fixed grid to avoid the re-meshing. In addi-
tion, the loading position was modeled in each iteration as 
a smooth surface that is determined by the local interpola-
tion of the material densities and then loaded by the pres-
sure. Fuchs and Shemesh [13] defined the loading surface 
independent of element density distribution and used very 
low Young’s modulus to model the water as highly com-
pliant material. Chen and Kikuchi [8] solved the hydro-
static pressure problem with a special strategy by which the 
design domain was transformed to three-phase materials 
(solid, void and hydrostatic fluid) and the hydrostatic pres-
sure along the solid-fluid interface was simulated as the 
thermal expansion effect of both phases of different ther-
mal expansion coefficients. Later, the level set method was 
applied to determine the moving boundary of pressure load 
(Allaire et al. [1], Liu et al. [16]). Recently, Sigmund and 
Clausen [19] suggest a mixed displacement-pressure finite 
element formulation by which the pressure loading surface 
doesn’t need to parameterize for the hydrostatic pressure 
problem. However, as this method is based on the special 
finite element formulation, it is difficult to implement it in 
the common engineering finite element software. The uni-
directional pressure load on moving surface is sometimes 
treated as a special case of hydrostatic pressure, typically in 
the works of Du and Olhoff [9], Chen and Kikuchi [8]. 
Alternatively, The ESO method was applied by Yang et al. 
[24] to solve this problem.  

In Fig. 3, optimal results obtained by   Du and Olhoff [9] 
are compared for fixed pressure load, hydrostatic pressure 
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and unidirectional pressure load. Obviously, the variations 
of load locations and directions lead to different optimal 
designs. Under hydrostatic pressure and unidirectional 
pressure loads, the solutions are arch-like structures, while 
some vertical columns supporting the non-designable load-
ing top deck are obtained in the case of fixed load. There-
fore, how the pressure load is properly modeled is a key 
issue dominating the optimal configuration. This is the mo-
tivation of the current work. 

  
(a) Model and boundary condi-

tion 
(b) Fixed pressure load 

 
(c) Hydrostatic pressure load (d) Unidirectional pres-

sure load 
Fig. 3 Optimal results under different pressure loads       

(Du and Olhoff [9]) 

In this paper, the main work is focused on the structural 
topology optimization subjected to unidirectional pressure 
loads. The maximum stiffness design is sought for struc-
tures consisting of multiphase materials. 

Firstly, we present the mathematical formulation of the 
maximum stiffness problem with multiphase materials. 
Secondly, the load distribution model is established explic-
itly in terms of density variables for each type of pressure 
load. Discussions are made about the design-dependent 
effects of both types of pressure loads in sensitivity analy-
sis of the structural compliance. It is shown that the explicit 
form of the pressure load can favor the analytical sensitiv-
ity analysis efficiently. Finally, some 2D and 3D represen-
tative examples are solved with the help of the developed 
force model and design procedure. Solutions associated 
with two load cases are investigated and compared with 
existing solutions to show the validity of the proposed 
models and methods. Furthermore, the influence of the 
parameters, such as the material volume fraction, the size 
of designable and non-designable domains upon the opti-
mal configurations are presented and analyzed. 

2 Topology optimization of structures 
with multiphase materials 
Basically, the purpose of structural topology optimization 
is to find such a topological configuration that has the max-
imum overall mean stiffness or minimum compliance for 
the prescribed material cost. The design variables are often 
defined by the element pseudo-densities and the SIMP 
model is often used both to penalize the element stiffness 
and to convert the discrete problem into a continuous one.  

Consider a structure consisting of one solid isotropic ma-
terial of Young’s modulus E(1), the SIMP interpolation 
model corresponds to 

( ) ( )1r
i iE x x E=                            (1) 

where xi is the pseudo-density design variable of element i, 
that represents the absence (0) or presence (1) of the mate-
rial. r is the penalization factor. The void area can be 
therefore considered as a material whose Young’s modulus 
is zero. Generally, when the structure consists of multi-
phase materials, the SIMP model can be written in the fol-
lowing way. 

2.1 Two-phase materials 

In this case, the SIMP interpolation model corresponds 
to 

( ) ( ) ( )

{ } ( )
( ) ( )

1 0
1 1

1 0

(1 )

1,..., ; 1

r r
i i i

i ij

E x E x E

x i n j

E E

= + −

= = =

>

x

x                 (2) 

where xi1 is the design variable of element i and n  refers to 
the element number. E(1) and E(0) are the Young’s moduli of 
two materials, respectively. Herein, the structure is 
composed of one solid material and void if E(0)=0. 
Consequently, the structural topology optimization problem 
can be written as 

{ } ( )1

T

1 1
1 1

find:    1,...,

minimize: 

subject to: 

i

n n

i i i
i i

x i n

C

V x vf V
= =

=

=

=

≤ ⋅∑ ∑

u Ku

F Ku                      (3) 

where vf1 is the prescribed volume fraction of material 1. Vi 
denotes the volume of element i. Usually, a lower bound, 
xmin, e.g., 10-3, is introduced for xi1 to avoid the singularity 
of the element stiffness matrix during the design iteration. 

Based on the finite element system equation, the 
differentiation results in 

ij ij ijx x x

∂ ∂ ∂+ =
∂ ∂ ∂
K u F

u K                 (4) 

so that 

1 1

ij ij ijx x x
− −∂ ∂ ∂= −

∂ ∂ ∂
u F K

K K u                 (5) 

The sensitivity of the mean compliance can thus be 
expressed as 

T
T T( )

ij ij ij ij

C

x x x x

∂ ∂ ∂ ∂= = +
∂ ∂ ∂ ∂

F u
F u u F            (6) 

The substitution of eq. (4) into eq. (6) yields 

T T2
ij ij ij

C

x x x

∂ ∂ ∂= −
∂ ∂ ∂

F K
u u u            (7) 

In the right hand, the first term represents the effect of 

design-dependent load. The evaluation of ijx∂ ∂F depends 

on how the force is modeled in terms of xij. This is the key 
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issue of the current work. For two-phase materials, the 
second term can be evaluated based on the SIMP model of 
eq. (2) 

( ) ( )( )1 01
1

1 1

ri
i

i i

rx
x x

−∂∂ = = −
∂ ∂

KK
K K                 (8) 

K(1) and K(0) refer to the element stiffness matrices related 
to E(1) and E(0), respectively. Thus, the substitution of 

1ix∂ ∂F and 1ix∂ ∂K to eq. (7) yields the sensitivity of 

the objective function. 
If the concerned load is fixed and not design-dependent, 

eq. (7) can be simplified as 

T

ij ij

C

x x

∂ ∂= −
∂ ∂

K
u u                       (9) 

The substitution of eq. (8) into eq. (9) then gives rise to the 
sensitivity of the structure compliance for two-phase 
material.  

( ) ( )( )
( ) ( )

1 01 T
1

1

1 01 T
1      ( )

r
i i i i i

i

r
ii i i

C
rx

x

rx E E

−

−

∂ = − −
∂

= − −

u K K u

u K u

             (10) 

It has the constant sign for 10 1ix≤ ≤ . Note 

that ( ) ( ) ( ) ( )1 1 0 0,i ii iE E= =K K K K . 

2.2 Three-phase materials 

The two-phase SIMP model can be easily extended to 
the case of three-phase materials (Bendsøe and Sigmund 
[6]). The difference is that two design variables xi1 and xi2 
are used for element i 

( ) ( ) ( ) ( )( ) ( ) ( )

{ } ( )
( ) ( ) ( )

2 1 0

2 1 1 2

2 1 0

1 1

1,..., ; 1,2

r r r r

i i i i i

i ij

E x x E x E x E

x i n j

E E E

= + − + −

= = =

> >

x

x  (11) 

Similarly, one can derive the SIMP model for four- and 
five-phase materials as given in the Appendix. 

Consider now the following case. If the three phases 
consist of two solid materials E(1), E(2) and one void phase 
E(0)=0, the element is then solid if xi2=1, while it is void if 
xi2=0. Meanwhile, xi1 determines which material phase is 
attributed to element i. Based on many numerical tests (Sun 
and Zhang [21]), it is found that the structural topology 
optimization problem can be reasonably stated as: 

{ } ( )1 2

T T

2 1 2 1 2
1 1 1 1

find: ,    1,...,

minimize: 

subject to: 

( ) ;  

i i

n n n n

i i i i i i
i i i i
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C
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= = = =

=

= =

=

≤ + ⋅ ≤ ⋅∑ ∑ ∑ ∑

F u u Ku

F Ku      (12) 

In this model, the first inequality is added to limit the 
total cost of solid materials 1 and 2, while the second one is 
to limit the cost of material 2. Both constraints are thus 
linear functions of design variables. 

Similarly, based on the SIMP model of three-phase 
materials, we have 

( ) ( )( )( )
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) 
In case of fixed load, the sensitivity of the structural 

compliance can be easily obtained as 
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14) 
Instead, in case of design-dependent load, evaluations 

of 1ix∂ ∂F and 2ix∂ ∂F become difficult and will be 

discussed in Section 3 and 4. 
In the same way, for a number of m+1 phase materials of 

Young’s modulus of E (m), …,E(1), E(0)  we will have m 
number of design variables denoted to be xim, …, xi2, xi1 for 
element i. Note that E(0)=0 is set to represent the void ele-
ment and xim represents the absence(0) or existence (1) of 
solid material phase. 

2.3 Numerical strategy of topology optimization 

Historically，several approximation schemes have been 
developed and applied successfully, such as CONLIN 
(Convex Linearization Method, derived by Fleury and 
Braibant [11]) and MMA (Svanberg [22]) family. In this 
paper, the MDQA (Method of Diagonal Quadratic 
Approximations, by Zhang and Fleury [25]) is applied to 
solve the topology optimization problem defined in eq. (3) 
and (12). As the MDQA is an algorithm based on the non-
monotonic, convex and second-order approximation in 
which the diagonal terms of the Hessian matrix are 
calculated using the function value at the preceding 
iteration, it is therefore suitable to deal with the 
optimization problem of design-dependent load for which 
the objective function is a non-monotonic function. 
Besides, the filtering technique proposed by Sigmund [18] 
is adopted herein to avoid the checkerboard. 

3 Modeling of unidirectional pressure 
load on fixed surface 

3.1 Load distribution model 

As the amount of pressure load, Psw, is unchanged in the 
optimization process and often defined by the solid weight 
that the concerned structure supports, it can be described as 

swp S P⋅ =                       (15) 

where p is the pressure value depending upon the applied 
surface area, S. In finite element analysis, the solid weight 
pressure is usually treated as a uniform pressure, i.e. 
p=Psw/S. However, in topology optimization, the pressure 
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value p will vary because S is modified iteratively. To cha-
racterize the effect of such a design-dependent load, an 
exponential penalization scheme is suggested in order to 
connect the pressure applied on each element to the in-
volved design variable.  

As only the design variable xim is concerned to distin-
guish its solid/void state of each element, for an element 
located on the load-applied surface, the pressure exists pro-
vided the element is a solid one with xim=1 whatever the 
material phase is. Thus, the pressure on element i is ex-
pressed as 

s
i imp x p=                                 (16) 

where s is the penalization factor. From eq. (15), we have  
s

sw
1

n

p S Pξ ξ
ξ =

=∑                             (17) 

where ns is the element number on the load-applied surface 

and Sξ is the applied surface area of a single element. 

Then, the substitution of eq. (16) into eq. (17) yields  

s

sw

1

n
s
m

P
p

x Sξ ξ
ξ =

=
∑

                                (18) 

The pressure on element i is then equal to 

s sw

1

s
im

i n
s
m

x
p P

x Sξ ξ
ξ =

=

∑
                         (19) 

Therefore, by means of eq. (19), the pressure will be redis-
tributed on each element after each iteration. As an exam-
ple, consider a structure of two phase materials (solid-void) 
shown in Fig. 4. Due to the varying distribution of material 
density along the loading top surface, an uneven pressure 
distribution will be applied. 

 
Fig. 4 Pressure load distribution using eq.(19) 

3.2 Sensitivity analysis 

Because the pressure is only applied on the elements at-
tached to the applied surface, the elements can be divided 
into two groups for which the force sensitivity term, 

ijx∂ ∂F in eq. (7), is calculated in different ways. 

s
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where ςF is the element nodal force vector depending upon 

pς  

T

S
p ds

ς
ς ς ς= ∫F N                   (21) 

with ςN andSς to be the shape function matrix and applied 

surface of the element.  

Based on eq. (19), the partial derivative of pς  with 

respect to imx can be derived as 
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           (22)

Finally, the sensitivity ijC x∂ ∂ can be obtained. 

4 Modeling of unidirectional pressure 
load on the moving surface 

To make things clear, consider a rectangle 2D domain 

meshed with v wn n×  elements as shown in Fig. 5(a). A 

vector {v, w} is used to describe the position of element i in 
the mesh. Thus, any corresponding parameters associated 

with element i will be denoted expressed with sub-
scriptvw, e.g., xvwm in place of xim.  

4.1 Bandwidth load distribution model 

Now, the problem is to determine on which elements 
the pressure load will be applied and how the pressure load 
will follow the variation of material densities over the 
mesh. Without loss of generality, consider gray elements of 
column w along the load direction in Fig. 5(a). They are 
numbered as 1 to nw from top to bottom. Herein, a band-
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width load distribution model is proposed. For all elements 
of column w, only the elements that satisfy the following 
condition will be chosen for load application. 

( ) ( )
min

v1 1

wm

wm w wwm

x x

x x L U n

ξ

ξξ ξ+

>

> ≤ ≤ < ≤
     (23) 

Lw and Uw denote the numbering of those elements whose 
xvwm is larger than xmin and increases when ξ  changes con-

tinuously from Lw to Uw along the load direction. 
As shown in Fig. 5(a), the bandwidth of loaded ele-

ments is marked by dark gray elements for column w. By 
means of eq. (23), the bandwidth of loaded elements can be 
identified column by column for the elements of the overall 
domain. For the material density distribution given in Fig. 
5(b), the sub-domain surrounded with black boundary de-
fines the bandwidth of the loaded elements.  

 
(a) illustration of loaded elements 

 
(b) Bandwidth of the loaded elements 

( )i vwp p

 
(c) pressure load on one element 

Fig. 5 Determination of loaded elements 

To determine the distribution of pressure load on the 
elements in the identified bandwidth, an exponential pe-
nalization scheme is introduced. 

0 ,

s
vwm w w w

vw

w w

x p L v U
p

v L v U

 ≤ ≤
=  < >

                      (24) 

where s is the penalization factor and the wp is the seg-

mental pressure for column w. Because the amount of pres-
sure on each column is identical and constant, we have  

w

1

n

wp pξ
ξ =

=∑                                    (25) 

Then, the substitution of eq. (24) into eq. (25) yields  

w
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w U
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Accordingly, the pressure on element i corresponds to 
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which is applied on the top edge of the element, as shown 
in Fig. 5(c). Thus, the loads on each element in the band-
width region are calculated and applied on the correspond-
ing element in each iteration. Fig. 6 shows how the pres-
sure load applied in Fig. 5(a) distributes along with the 
distribution of density variable. It can be imagined that the 
load will be only applied on the top side of solid element in 
each column when a 0-1 pattern of the optimal structure is 
obtained in case of snow pressure load. 

 
Fig. 6 Distribution of pressure load using Eqs. (23, 27)  

4.2 Sensitivity analysis 

With the proposed scheme, the load distribution and the 
bandwidth loaded area will be updated in the FE model 
after each design iteration. In other words, the design-
dependent effect is taken into account only at the stage of 
finite element analysis. 

5 Numerical examples 
In this section, 2D models and 3D models are presented, 

as shown in Fig. 7. The design-dependent pressure is ap-
plied in model 2, 3, 5 and 6. Comparatively, the fixed pres-
sure is applied on the non-designable domain of the struc-
ture in model 1 and 4. Note that the structure is fixed at the 
upper corners in model 3, while in other models, the struc-
ture is fixed at the lower corners.  

In order to compare the results in a coherent way, the 

normalized objective function r
FC  is used here 

r
F FC C C=                              (28) 

where C is the structural compliance of the optimal struc-
ture and CF is that of the initial structure full of material 
phase m for the problem of m+1 material phases. 
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(a) model 1 

 
(b) model 2 

 
(c) model 3 

L

Ddesign domain

fixed pressure

 
(a) model 4 

D

H

 
(b) model 5 

 
(c) model 6 

Fig. 7 Models and boundary conditions 

5.1 Unidirectional pressure load on contact 
surface of fixed shape 

2D cases: the optimization of plane examples is firstly 
presented. Suppose the structure consists of solid and void 
phase materials and the former is constraint to be 30% vol-
ume fraction of the whole structure. For model 2 with L=1 

and H=0.4, it is meshed with 120×60 elements. To show 
the influence of design-dependent effects, the optimal con-
figurations using eq. (7) and eq. (9) for sensitivity analysis 
are compared in Fig. 8. It can be seen that two inclined 
columns shown in Fig. 8(a) are joined together by a hori-
zontal member and the pressure loads are concentrated at 
two extreme ends and transferred to the fixation along the 
inclined columns. However, if the effect of design-
dependent load is ignored in sensitivity analysis, an optimal 
configuration of reverse “V” shape is obtained and the 
pressure is applied at the middle part. A comparison of the 
normalized compliances between two configurations indi-
cates that the configuration given in Fig. 8(a) is much stif-
fer.  

  
(a) Optimal solution with 
design-dependent load for 

model 2 using eq. (7) 
r

F 1.354C =  

(b) Optimal solution with 
design-dependent load for 

model 2 using eq. (9) 
r
F 2.665C =  

  
(c) Optimal solution with 
two-phase solid materials 
and design-dependent load 
for model 2 using (eq. (7)) 

r
F 1.771C =  

(d) Optimal solution with 
non-designable domain and 
fixed load for model 1 using 

eq. (9) 
r
F 1.624C =  

Fig. 8 2D optimal configurations with different pressure 
load models 

Besides, the optimal configuration with two solid mate-
rial phases is presented as well in Fig. 8(c). Herein, 
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E(2):E(1)=3:1 and vf1=vf2= 0.15. It is obvious that the stiffer 
material is distributed along the columns and the middle 
part of the horizontal member.  

In Fig. 8(d), an arch-like structure with small vertical 
supports is obtained for model 1 under fixed pressure. 
Here, the volume fraction is set to be 30% of the whole 
structure for the material constraint and the thickness of the 
non-designable member consists of four-layer elements. 

To reveal the influence of the thickness of the non-
designable member, the structural compliance of the opti-
mal solution is plotted versus the thickness in Fig. 9. Fol-
lowing remarks can be made. Firstly, the structural compli-
ance attains the smallest value when four-layer elements 
are used. Secondly, the structural compliance is always 
larger than the value obtained by virtue of Eq. (7) that takes 
into account the design-dependent effect of the pressure 
load. But it is always smaller than the value obtained by 
virtue of Eq. (9) that excludes the design-dependent effect 
of the pressure load in sensitivity analysis. 

 Fig.9 Influence of non-designable member thickness in 

model 1 

 
(a) Influence of volume fraction upon normalized compli-

ance 

 
(b) Optimal configuration (model 2, vf1=0.997) 
Fig.10 Optimization results for models 1 and 2  

Effects of the volume fraction upon normalized compli-
ance of optimization results are studied in Fig.10(a). For 
model 1 under fixed pressure, the structural compliance of 

the optimal design decreases monotonously when the vol-
ume fraction increases. This curve agrees well with the 
concept of conventional topology design, i.e., more mate-
rial, stiffer the structure. For the structure in load case 1, 
the curve is found to be non-monotonous. With the increase 
of the volume fraction, the compliance decreases smoothly 
and then increases very quickly near vf1=0.997. It is ob-
served that only the middle part of the top layer is void in 
the corresponding configuration, as shown in Fig.10(b). 

3D cases: models 4-6 shown in Fig. 7 are investigated. 
Suppose the volume fraction is set to be 15% of the whole 
structure. Dimensions are L=D=1 and H=0.4 for models 4 
and 5, R=1 and H=0.4 for model 6. Note that the top layer 
elements are assumed to be non-designable for fixed pres-
sure in model 4.  

The optimal designs of three models are shown in Fig. 
11. For model 4, the optimal configuration given in Fig. 
11(a) is similar to that found by Yang et al. (2005). For 
models 5 and 6, four columns are generated on the fixed 
points and connected by straight members. The comparison 
shows that the solution without non-designable domain has 
smaller compliance value than that in Fig. 11(a). 

 

(a) optimal structure of 
model 4 
r
F 1.487C =  

(b) optimal structure of 
model 5 
r
F 1.056C =  

 
(c) optimal structure of model 6 

r
F 1.167C =  

Fig. 11 3D optimal configurations 

5.2 Unidirectional pressure load on the moving 
surface 

Model 2 is investigated firstly. Dimensions are L=1 and 

H=0.5. The structure is meshed with 40×20 elements. The 
optimal design is shown in Fig. 12(b) while the optimal 
design from the literature is shown in Fig. 12(a) for com-
parison. The former is found to be more interesting with a 
smaller value of structural compliance. 

In Fig. 12(c), the optimal solution associated with two-
solid phase materials is illustrated. Besides, effects of the 
volume fraction upon the normalized compliance are plot-
ted in Fig.13. Obviously, the compliance of optimal struc-
ture decreases very slowly when the volume fraction is 

solid 

void 
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larger than 0.6. Some representative optimal configurations 
are presented in Fig.13 as well. 

  
(a) two material phases 

(Du and Olhoff [9]) 

vf1=0.5, r
F 1.071C =  

(b) two material phases 

vf1=0.5, r
F 1.051C =  

 
(c) three material phases 
vf1= vf2=0.2, E(2):E(1)=3:1 

r
F 1.771C =  

Fig. 12 2D optimal configurations of model 2 under pres-
sure load of case 2 

 
Fig. 13 Normalized compliance versus volume fraction for 
optimization results of model 2 under pressure load of case 

2  

 
Fig.14 Influence of H/L upon the optimization results 

Now, it is interesting to investigate the influence of 
structural dimension upon the optimization results. Here, 
dimension H is assumed to be changeable while L=1 is 
retained and the volume of solid material is kept to be 0.2 
irrespective of H. Optimal solutions for different values of 
H are presented in Fig. 14. One can see that the structural 
compliance decreases with the increase of H. And that the 

optimal configurations are almost kept to be unchanged 
whenH 0.5≥ , i.e., the optimization result cannot be im-
proved any more. 

Furthermore, the proposed design procedure is applied 
for model 3 that is fixed at the upper corners. The design 
domain has a dimension of L=1 and H=0.5 and is meshed 

into 40×20 elements. Under the moving pressure load, the 
optimization results of one and two solid material phases 
are shown in Fig.15, respectively. Both configurations are 
found to be similar and no elements of intermediate density 
values exist.  

  
(a) one solid material phase 

vf1=0.3, r
F 1.253C =  

(b) two solid material phases 
vf1= vf2= 0.15, 

E(2):E(1)=3:1, r
F 1.788C =  

Fig. 15 2D optimal configurations of model 3 under pres-
sure load of case 2 

 
(a) optimal structure of model 5 (Yang et al. [24])    

r
F 1.379C =  

 

 

(b) optimal structure of model 5  
r
F 1.373C =  

 
 

(c) optimal structure of model 6 

(d) r
F 1.344C =  

Fig. 16 3D optimal configurations under pressure load of 
case 2 

3D cases: The optimal designs of 3D problems under 
load case 2 are shown in Fig. 16. The same dimensions as 
those in Fig. 11 are adopted and vf1=0.1. For model 5, the 
optimal configuration given in Fig. 16(b) is very similar to 
that obtained by Yang et al. [24] and shown in Fig. 16(a). 
Both optimization results of model 5 and 6 resemble the 
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gothic vaulting. Obviously, four arches join the adjacent 
supports. Moreover, there are two arch vaults over the di-
agonal supports and a cross appears at the top of the struc-
ture. 

Conclusions 
This work is focused on topology optimization of struc-

tures consisting of multiphase materials under unidirec-
tional pressure load. Unlike traditional design problems, 
the unidirectional pressure load considered here is design-
dependent. This means that the pressure load varies in 
magnitude and location with respect to the material distri-
bution. Exponential models of closed-form are proposed to 
describe the relationship between the pressure load and the 
material density variables. Correspondingly, sensitivity 
analysis is developed to take into account the design-
dependent effect of the load variation during the design 
iteration. As the structural compliance is no longer mono-
tonic function of design variables, the MDQA optimization 
algorithm is adopted to solve the considered numerical 
examples. The investigation of obtained results shows that 
the developed force model and the design procedure are 
reliable to produce satisfactory design solutions. 
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