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Abstract — In this paper, design-dependent pressure loadsdairessed for topology optimization problems oftipbhse
material structures. The modeling of unidirectioloald distribution with respect to the material signis studied and ma-
thematical formulations of exponential form areabfished for the first time to model unidirectiopaéssure loads on the
moving surface and contact surface of fixed shegegectively. In both load cases, sensitivity asialgcheme of the struc-
tural compliance is developed to show the effetth® design—dependent loads. By means of 2D anduierical exam-
ples, comparative studies are performed in dedgahbw the effects of different load cases uporofitanal configurations.
It is seen that the proposed design procedurdiable to deal with the design-dependent load cases

Key words : Topology optimization, design-dependent pressuaddpload distribution, sensitivity analysis

1 Introduction

Here starts the main part of the paper. You casHigour
paper first and then copy all your texts, figures déables
into this template. And the “Format brush” in MS-Wo
may be helpful.

This paragraph shows how to use some referencel: Wi
in this scope, optimal support locations were found
Rozvany [1], Mroz and Rozvany [2], Prager and Rozva

a proper load model is needed for their updatingims of
design variables. Secondly, when the objective tfancto
be minimized is still defined as the structural pdiance,
the sensitivity of the latter will change its sigmstantly
during the optimization iteration due to the effeftthe
design-dependent loads so that the objective fomds no
longer a decreasing monotonic function. This inplikat
more material might make the structure less rifsidtead,
the sensitivity is always negative under fixed |aamhdi-
tions, i.e., more materials, more rigid the struetdo clar-

[3], Szelag and Mroz [4] to improve elastic andstilare-
sponses of beams. Likewise, Rozvany and Mroz [8]ofD
and Taylor [6], Olhoff and Akesson [7] discussed ttol-
umn support optimization for buckling load maxintina. ¥

In recent years, various optimization models andhme
ods have been presented to address the structesajnd
problems. Among others, topology optimization is aft
vanced research topic. It could be considered @4 alis-
crete problem. The basic approach is to transfdmndis-
crete problem into a continuous one, such as theheni-
zation method (Bendsge and Kikuchi [5]), the SIN#BId
Isotropic Material with Penalization) method (Beadd3], H
Bendsge and Sigmund [6]) and the RAMP (Rational Ap- 5
proximation of Material Properties) method (Stolped HE
Svanberg [20]). Nevertheless, the considered pnaoblare
mostly limited to fixed load conditions. Namely, atbver
the variation of the structural configuration isg tapplied
loads remain unchanged. In practice, many strustoeed
to be designed for optimal configurations undetsa¢ype
of load that changes with respect to the mateaigdut, i.e.,
the so-called design-dependent load (Chen and Kikuc
(8]).

By definition, the design-dependent loads are those
whose values, locations or directions depend upgun t
structure itself. Here, it is necessary to higHligho points.
Firstly, as the loads vary during the design iferaprocess,

ify the discussion, considered design-dependertdsicae
classified in the following presentation.

VAN
(a) Model

JAN
and boundary condition

1
1
T
T

(b) Optimal result of (c) Optimal result of
Fuchs and Moses [12] Yang et al. [24]
Fig. 1 Optimal results related to transmissibled®a

“Transmissible” or “sliding” loads: To the authbrs
knowledge, “transmissible” or “sliding” loads migbé the
design-dependent loads that were firstly investigan the
work of Rozvany and Prager [17]. According to Fuahsl
Moses [12], a transmissible force is a force okgivnagni-
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tude and direction which can be applied at anytpaliong
the action line of the force. As illustrated in Figa), each
force attached to the universe structure is movablhdi-
cally. Fuchs and Moses [12] studied the topologynaiga-
tion of structures under transmissible loads arel sb-
called “Prager structure” is obtained. Likewise ngzeet al.
[24] solved this problem with ESO/BESO (Evolutiopar
Structural Optimization and Bi-direction Evolutioga
Structural Optimization) method. As shown in Figsini-
lar optimal results are obtained with the heighletogth
ratio being 0.479 and 0.48, respectively whereasatia-
Iytical solution obtained by Rozvany and Praged [i&s a
height-to-length ratio of 0.43.

| L

0.6L

sel f-wei ght

JAN A
(a) Model and boundary condi-
tion

(b) MP

(c) ESO (0.115)
sitivity (0.113)
Fig. 2 Optimal results of arch structure under-sedfght
load (Ansola et al. [2])

Body force: This includes inertial load (e.g., stural
self-weight, translational inertial load and cefioigal load)
and heat generation rate of the thermal problenstrinc-
tural topology optimization, the location and diten of
body force usually keep fixed whereas the magnituile
vary with the addition and deletion of materialstie op-
timization process. In other words, no material, load.
Bruyneel and Duysinx [7] investigated the topolampti-
mization of structures under self-weight loadinghasIMP
and different MMA (Method of Moving Asymptotes) ap-
proximation schemes.
ESO/BESO method to solve the same problem. In timk w
of Ansola et al. [2], obtained solutions are founde not
exactly the same. As shown in Fig. 2, under thivgeight
loading, the MP method produces an arch-like stingct

(d) ESO with modified sen

is necessary to notice that the material removHlreduce
the body force and in the limit case the desigrbleno will
become singular when the structure is only soliclig the
body force.

Surface contact pressure load: The pressure locltkhis
acterized by the applied surface, load magnitude laad
direction. Here, two cases of surface pressureslcae
considered:

Case 1: Unidirectional pressure load on contadiasar
of fixed shape. This type of load is applied onoading
surface of specific shape. The surface contact areg
change and the load will be redistributed in thsigle
process while the amount of total load remains tzoms
and the loading direction is unchanged during tpology
optimization. The typical example is the designaofoad
support structure pressured by a rigid object.

Case 2: Unidirectional pressure load on movingasarf
The difference between this type of load and tleegding
one lies in that the pressure load follows the ataon of
the loading surface being designed during the strat
optimization while the load magnitude and the dimet
remain unchanged. The typical example is the sneight
pressure acting on a civil structure. Note that hilgdro-
static pressure load is similar but the loadingdion is
always normal to the loading surface.

Until now , existing work has been mainly focused on

the hydrostatic pressure load and the unidirectignes-
sure load on moving surface. Few works are foundhen
pressure load of Case 1. Bendsge [4] studied theltsine-

ous optimization of the structure topology and shapder
the hydrostatic pressure load and the structure ngas
meshed after each iteration. The same problem was a
dressed by Hammer and Olhoff [15], Du and OlhoffL.[§
who used the fixed grid to avoid the re-meshingadidli-
tion, the loading position was modeled in eachatien as
a smooth surface that is determined by the lodelpola-
tion of the material densities and then loadedHey fres-
sure. Fuchs and Shemesh [13] defined the loadirfgczu
independent of element density distribution anddusery
low Young’'s modulus to model the water as highlyneo
pliant material. Chen and Kikuchi [8] solved thedhy
static pressure problem with a special strategwhigh the
design domain was transformed to three-phase rabteri
(solid, void and hydrostatic fluid) and the hydeai&t pres-

Yang et al. [24] applied the sure along the solid-fluid interface was simulated the

thermal expansion effect of both phases of diffetaer-
mal expansion coefficients. Later, the level sethoé was
applied to determine the moving boundary of pressomd
(Allaire et al. [1], Liu et al. [16]). Recently, @nhund and

whereas the ESO method gives rise to a more complia Clausen [19] suggest a mixed displacement-predaite

solution for which two columns are generated ahlsitles
on the top of supports and joined together witHeader
arch. For this reason, Ansola et al. [2] introdudeel vol-
ume constraint to modify the sensitivity formula,tbat the
improved result agrees well with that obtained by MP
method as observed in Fig. 2(d). Besides, combaoesd
trifugal and external loads were addressed by Tatte
and Washabaugh [23] to show the influence of nedati
magnitude of both loads on the optimal design efrittat-
ing prismatic structure. The heat generation ras imves-
tigated by Gao et al. [14] for topology optimizatiof the
steady heat conduction problem with the BESO method

element formulation by which the pressure loadindase
doesn’'t need to parameterize for the hydrostatésgire
problem. However, as this method is based on teeiap
finite element formulation, it is difficult to impment it in
the common engineering finite element software. hie
directional pressure load on moving surface is sones
treated as a special case of hydrostatic pressyieally in
the works of Du and Olhoff [9], Chen and Kikuchi].[8
Alternatively, The ESO method was applied by Yahgle
[24] to solve this problem.

In Fig. 3, optimal results obtained by Du and @ik9]
are compared for fixed pressure load, hydrostatissure
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and unidirectional pressure load. Obviously, theat®ns
of load locations and directions lead to differeptimal
designs. Under hydrostatic pressure and unidineatio
pressure loads, the solutions are arch-like strasfuvhile
some vertical columns supporting the non-designkdald-
ing top deck are obtained in the case of fixed |d&tere-
fore, how the pressure load is properly modeled iey
issue dominating the optimal configuration. Thishie mo-

tivation of the current work.
Initial pressure loading

by by v b vad

0.5L

A A

(a) Model and boundary condi- (b) Fixed pressure load
tion

(c) Hydrostatic pressure load

(d) Unidirectionaspr
sure load
Fig. 3 Optimal results under different pressureltoa
(Du and Olhoff [9])

In this paper, the main work is focused on thecstmal
topology optimization subjected to unidirectionaégsure
loads. The maximum stiffness design is sought farcs
tures consisting of multiphase materials.

Firstly, we present the mathematical formulationttod

maximum stiffness problem with multiphase materials

Secondly, the load distribution model is establiskgplic-
itly in terms of density variables for each typepoéssure

load. Discussions are made about the design-depende

effects of both types of pressure loads in serigitanaly-
sis of the structural compliance. It is shown thatexplicit
form of the pressure load can favor the analyteadsitiv-
ity analysis efficiently. Finally, some 2D and 3Bpresen-
tative examples are solved with the help of theettgped
force model and design procedure. Solutions ad®atia
with two load cases are investigated and comparitid w
existing solutions to show the validity of the pospd
models and methods. Furthermore, the influencehef t
parameters, such as the material volume fractlom,stze
of designable and non-designable domains upon ptie o
mal configurations are presented and analyzed.

2 Topology optimization of structures
with multiphase materials

Basically, the purpose of structural topology ojitiztion
is to find such a topological configuration thasthe max-
imum overall mean stiffness or minimum compliance f
the prescribed material cost. The design varia#tesoften

defined by the element pseudo-densities and thePSIM

model is often used both to penalize the eleméfiihests
and to convert the discrete problem into a contisuane.
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Consider a structure consisting of one solid igotrana-
terial of Young’'s modulus E(1), the SIMP interpabat
model corresponds to

E(x)= % E” &)
wherey; is the pseudo-density design variable of element
that represents the absence (0) or presence (i ofate-
rial. 1 is the penalization factor. The void area can be
therefore considered as a material whose Youngdums
is zero. Generally, when the structure consistauati-
phase materials, the SIMP model can be writteherfol-
lowing way.

2.1 Two-phase materials

In this case, the SIMP interpolation model correslso
to

E(Xi ) = ){1 EY +(1- )iil) =
Xi:{X;} (i=1..n; j=1

g® s g0
wherex;; is the design variable of elemérand N refers to
the element numbeE® andE® are the Young’s moduli of
two materials, respectively. Herein, the structue
composed of one solid material and void E=0.
Consequently, the structural topology optimizatoablem

can be written as
{x} (i=1..n)

find:
minimize:C =u'Ku

)

subject toF =Ku 3)

SVx <Y

wherevf, is the prescribed volume fraction of material/1.
denotes the volume of elemantUsually, a lower bound,
Xmin, €.0-, 10, is introduced for, to avoid the singularity
of the element stiffness matrix during the destgnattion.

Based on the finite element system equation, the

differentiation results in

oK ou _ oF
—U+K——=— (4)
0X; 0x 0%
so that
a_u:K‘la_F—K‘la_Ku (5)
0 0% 0%

The sensitivity of the mean compliance can thus be
expressed as

T
a—C:i(FTu):aF u+ET U (6)
0%, 0% 0% ox
The substitution of eq. (4) into eq. (6) yields
aC . oF ; 0K
—=2—U —-u —u 7
0%, 0% 0%

In the right hand, the first term represents thieatf of
design-dependent load. The evaluatiorﬂ&‘/a)gj depends

on how the force is modeled in termsxgf This is the key
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issue of the current work. For two-phase materitig,
second term can be evaluated based on the SIMPI mibde
eq. (2)

oK 0K,

©)
0%, 0%,

= rxi’l'l(K @ _k (0))

OK 0K (K@ —K @
AL ) .
K K,

@:K:rxiz (()glK(Z)+(1— ){1)K(1))—K(°))

K® andK@refer to the element stiffness matrices related )

to EM and E, respectively. Thus, the substitution of
0F/0x, anddK /0x, to eq. (7) yields the sensitivity of
the objective function.
If the concerned load is fixed and not design-depet)
ed. (7) can be simplified as
oC
—=-u —u
0 0,
The substitution of eq. (8) into eq. (9) then givise to the

sensitivity of the structure compliance for two-pba
material.

a_C = _rx_rl_lu_T (K(l) - K(O) ) u

a)ﬂl i i i i (10)
=t EY - EQ WK,

It has the constant sign fo0<x, <1 .

thatk ¥ = EVK;, K9 = EK;.

Note

2.2 Three-phase materials

In case of fixed load, the sensitivity of the stwual
compliance can be easily obtained as

:_Z =, (E7 - BY)uKu
% o o))

=-rx,’ (()g’lE(Z) + (1— >|{l) E(l)) - g0 ) uiTEiui

14)
Instead, in case of design-dependent load, evahsmti

of dF/0x, and 0F/dx, become difficult and will be

discussed in Section 3 and 4.

In the same way, for a numberrof#1 phase materials of
Young’'s modulus ofE ™, ... BY, E® we will havem
number of design variables denoted taxhe ..., X2, X1 for
elementi. Note thatE©=0 is set to represent the void ele-
ment andx;, represents the absence(0) or existence (1) of
solid material phase.

2.3 Numerical strategy of topology optimization

The two-phase SIMP model can be easily extended to

the case of three-phase materials (Bendsge anduSdym
[6]). The difference is that two design variablgsandx;,
are used for element

E(Xi)= ){2(){1 E(2)+(1_ *1) Iél))"'(l_ ﬁ(z) EO)
X, ={>qj } (i=1,..n; j=1,2

E@ > g 5 g0
Similarly, one can derive the SIMP model for foand
five-phase materials as given in the Appendix.

Consider now the following case. If the three pkase
consist of two solid materiaE™, E® and one void phase
E©=0, the element is then solidx,p=1, while it is void if
x2=0. Meanwhile,x; determines which material phase is
attributed to element Based on many numerical tests (Sun
and Zhang [21]), it is found that the structurgbdlogy
optimization problem can be reasonably stated as:

find: {x, %} (i=1..n)
minimize:C =F'u=u'Ku

(11)

subject toF =Ku (12)

SV S (DY Y Vs v v

In this model, the first inequality is added to iinthe
total cost of solid materials 1 and 2, while thess®&l one is
to limit the cost of material 2. Both constraint® dahus
linear functions of design variables.

Similarly, based on the SIMP model of three-phase

materials, we have

Historically , several approximation schemes have been

developed and applied successfully, such as CONLIN
(Convex Linearization Method, derived by Fleury and
Braibant [11]) and MMA (Svanberg [22]) family. Iis
paper, the MDQA (Method of Diagonal Quadratic
Approximations, by Zhang and Fleury [25]) is apgli®
solve the topology optimization problem definecei (3)
and (12). As the MDQA is an algorithm based onriba-
monotonic, convex and second-order approximation in
which the diagonal terms of the Hessian matrix are
calculated using the function value at the preapdin
iteration, it is therefore suitable to deal witheth
optimization problem of design-dependent load fdrich

the objective function is a non-monotonic function.
Besides, the filtering technique proposed by Sigun[i8]

is adopted herein to avoid the checkerboard.

3 Modeling of unidirectional pressure
load on fixed surface

3.1 Load distribution model

As the amount of pressure lode,, is unchanged in the
optimization process and often defined by the selght
that the concerned structure supports, it can beried as

pBE=E, (15)
wherep is the pressure value depending upon the applied
surface areaS In finite element analysis, the solid weight

pressure is usually treated as a uniform pressiuee,
p=Ps,/S. However, in topology optimization, the pressure
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valuep will vary because is modified iteratively. To cha-
racterize the effect of such a design-dependerd, laa
exponential penalization scheme is suggested ieraml
connect the pressure applied on each element tanthe
volved design variable.

As only the design variablg,, is concerned to distin-
guish its solid/void state of each element, foredgment
located on the load-applied surface, the presstistsepro-
vided the element is a solid one with=1 whatever the
material phase is. Thus, the pressure on elementex-

pressed as
P =% P (16)
wheres is the penalization factor. From eq. (15), we have

N
Z pfsé = Fs)w
&=1

17)

wherengis the element number on the load-applied surface
and Sf is the applied surface area of a single element.

Then, the substitution of eq. (16) into eq. (1 Blds

P
p= % (18)
S
z Xe’mSe’
é=1
The pressure on elemdris then equal to
S
pi = L F;W (19)

n
2 XS
&=1
Therefore, by means of eq. (19), the pressurebeiltedis-
tributed on each element after each iteration. Agxam-
ple, consider a structure of two phase materialdisoid)
shown in Fig. 4. Due to the varying distributionroéterial

density along the loading top surface, an unevesssure
distribution will be applied.
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Fig. 4 Pressure load distribution using eq.(19)

3.2 Sensitivity analysis

Because the pressure is only applied on the elenagnt
tached to the applied surface, the elements cadivioded

into two groups for which the force sensitivity rter
6F/6)§j in eq. (7), is calculated in different ways.

oF _

6>gj 0

where FC is the element nodal force vector depending upon

P

% OF
> — j=m, elemeni0S
=1 0X; (20)

others

F.= L{ N; p.ds (21)

with NC andSc to be the shape function matrix and applied
surface of the element.
Based on eq. (19), the partial derivativefof with

respect toX, can be derived as

Ns

2 %n%

£=1.8#i

e Eres (a8 3 ot

2 SW 2 sSw C =
n 0
apc _ [; x;mS{j (; )§m §J (22)
a)gm s -1 -1
_(Xcm)(sxsm S)|:> :_Mp CZi

oo 2
2 XenS
=

Finally, the sensitivityaC/a)gj can be obtained.

4 Modeling of unidirectional pressure
load on the moving surface

To make things clear, consider a rectangle 2D domai
meshed withn, X n, elements as shown in Fig. 5(a). A

vector {v, w} is used to describe the position of elemieint
the mesh. Thus, any corresponding parameters assgci

£ re)

with elementi will be denoted expressed with sub-
SCriptvW, e.g. Xuwmin place of¥y,.

4.1 Bandwidth load distribution model

Now, the problem is to determine on which elements
the pressure load will be applied and how the preskad
will follow the variation of material densities avéhe
mesh. Without loss of generality, consider grayreets of
column w along the load direction in Fig. 5(a). Yiere
numbered as 1 to, from top to bottom. Herein, a band-
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width load distribution model is proposed. Fored#ments

of columnw, only the elements that satisfy the following

condition will be chosen for load application.
Xe’wm > Xmin

(23)
Xeapm > Xeam (1S L,<E<U,<n)

L, and U,, denote the numbering of those elements whose

Xwum iS larger thanm, and increases whef changes con-
tinuously fromL,, to U, along the load direction.

As shown in Fig. 5(a), the bandwidth of loaded ele-

ments is marked by dark gray elements for columrBv.
means of eq. (23), the bandwidth of loaded elemezanishe
identified column by column for the elements of dwerall
domain. For the material density distribution givarFig.
5(b), the sub-domain surrounded with black boundtay

__ b
P =5 — (26)
2 Xeum
&=L,
Accordingly, the pressure on elemérbrresponds to
S
UM p Lw sVs Uw
B = R =1 2 Xeum (27)
&=Ly
0 v<lL,, v>U,

which is applied on the top edge of the elementhasvn
in Fig. 5(c). Thus, the loads on each element enlthnd-
width region are calculated and applied on theespond-
ing element in each iteration. Fig. 6 shows how phes-

fines the bandwidth of the loaded elements. sure load applied in Fig. 5(a) distributes alonghwthe
distribution of density variable. It can be imaginbat the

load will be only applied on the top side of saiément in

YYYVVYYVYVYVYVVYVVYYYVYVYY

-t
-l
-4

=
] 'gn each column when a 0-1 pattern of the optimal &trecis
|| 5} obtained in case of snow pressure load.
— B0 0.0
;] ] =

element i - ] 5 01

|| < 0.2

S 0.3

0.4

10
0.4 Fig. 6 Distribution of pressure load using Egs., (ZB)

0.9 4.2 Sensitivity analysis

(b) Bandwidth of the loaded elements

248

YYYYVYVYY

With the proposed scheme, the load distribution ted
bandwidth loaded area will be updated in the FE ehod
after each design iteration. In other words, theigie
dependent effect is taken into account only atstlage of
finite element analysis.

5 Numerical examples

In this section, 2D models and 3D models are ptesggn
as shown in Fig. 7. The design-dependent pressuag-i
plied in model 2, 3, 5 and 6. Comparatively, thedi pres-
sure is applied on the non-designable domain ofsthec-
ture in model 1 and 4. Note that the structuréxisd at the
upper corners in model 3, while in other models, struc-
ture is fixed at the lower corners.

In order to compare the results in a coherent wiag,

element i (v, w)

(c) pressure load on one element
Fig. 5 Determination of loaded elements

To determine the distribution of pressure load ba t
elements in the identified bandwidth, an exponérpi
nalization scheme is introduced.

" 0 v<lL,v>U,

wheres is the penalization factor and thg, is the seg-

mental pressurfor columnw. Because the amount of pres-
sure on each column is identical and constant,ave h

Ny
z p{w = p
=1

Then, the substitution of eq. (24) into eq. (2®Ids

normalized objective functiofC;. is used here

C.=C/CG (28)
whereC is the structural compliance of the optimal struc-

ture andCe is that of the initial structure full of material
phasem for the problem ofm+1 material phases.

(24)

(25)
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fixed pressure

YrYYvvYYYYY

Y

%

| non-designable domain

design domain

Ly L ot

(a) model 1
design-dependent pressure

YYYYYYYYYY,

design domain

e

(b) model 2
design-dependent pressure

YrYYYYYYYGYY

design domain

R

(c) model 3
kS
fixed pressure f
AN
/”a;sign domain 9 />\

—

(a) model 4

design-dependent
pressure

9
YYYYIYIVbIIYIYIYY Y/

/aesign domain

L

\
(b) model 5

non-designable domain

design-dependent
pressure

(c) model 6
Fig. 7 Models and boundary conditions

5.1 Unidirectional pressure load on contact
surface of fixed shape

2D cases: the optimization of plane examples ®&l¥ir
presented. Suppose the structure consists of antidvoid
phase materials and the former is constraint t808é vol-
ume fraction of the whole structure. For model #hvki=1

and H=0.4, it is meshed with 1260 elements. To show

the influence of design-dependent effects, thenmgticon-
figurations using eq. (7) and eq. (9) for sendiiwnalysis
are compared in Fig. 8. It can be seen that twénied
columns shown in Fig. 8(a) are joined together byos-
zontal member and the pressure loads are concethtaat
two extreme ends and transferred to the fixatiamglthe
inclined columns. However, if the effect of design-
dependent load is ignored in sensitivity analysispptimal
configuration of reverse “V” shape is obtained aheé
pressure is applied at the middle part. A comparisiothe
normalized compliances between two configuratiord-i
cates that the configuration given in Fig. 8(ainisch stif-
fer.

I \/\

(a) Optimal solution with (b) Optimal solution with
design-dependent load for design-dependent load for
model 2 using eq. (7) model 2 using eq. (9)

Cl =1.354 CL =2.66E

(c) Optimal solution with (d) Optimal solution with
two-phase solid materials non-designable domain and
and design-dependent load fixed load for model 1 using

for model 2 using (eq. (7)) eg. (9)
CL=1.771 Cl=1.624
Fig. 8 2D optimal configurations with different pere
load models

Besides, the optimal configuration with two solicter
rial phases is presented as well in Fig. 8(c). lhere
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E@.E®=3:1 andvf=vf,= 0.15. It is obvious that the stiffer
material is distributed along the columns and thddie
part of the horizontal member.

In Fig. 8(d), an arch-like structure with small tieal
supports is obtained for model 1 under fixed pressu
Here, the volume fraction is set to be 30% of tHeole
structure for the material constraint and the théds of the
non-designable member consists of four-layer elésen

To reveal the influence of the thickness of the -non

designable member, the structural compliance ofobte
mal solution is plotted versus the thickness in. BigFol-
lowing remarks can be made. Firstly, the structacahpli-
ance attains the smallest value when four-layemefgs
are used. Secondly, the structural compliance gy
larger than the value obtained by virtue of Eq.t(iax takes
into account the design-dependent effect of thessume
load. But it is always smaller than the value aledi by
virtue of Eq. (9) that excludes the design-depenhééiect
of the pressure load in sensitivity analysis.

3.0

25 ¢
—=—  model 1

— == model 2 (eq.(7))

———- model 2 (eq.(9))

normalized compliance
r o

]

<

0 2 3 4 5 6 7 8
layer numbers of non-designable domain

Fig.9 Influence of non-designable member thickriess

model 1

g
=]

# load case 1 (model 2)
u fixed pressure (model 1)

normalized compliance
= = = =
™o - N -]
.

Iy
=1

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
volume fraction

(a) Influence of volume fraction upon normalized compli
ance

void

(b) Optimal configuration (model %f;=0.997)
Fig.10 Optimization results for models 1 and 2

Effects of the volume fraction upon normalized céimp
ance of optimization results are studied in FigalOgor
model 1 under fixed pressure, the structural ccanpke of

the optimal design decreases monotonously whewdhe
ume fraction increases. This curve agrees well liid

concept of conventional topology design, i.e., morate-

rial, stiffer the structure. For the structure oadl case 1,
the curve is found to be non-monotonous. With tiredase
of the volume fraction, the compliance decreasesosity

and then increases very quickly ned=0.997. It is ob-
served that only the middle part of the top layevaid in

the corresponding configuration, as shown in Fig)LO

3D cases: models 4-6 shown in Fig. 7 are investifat
Suppose the volume fraction is set to be 15% ofathele
structure. Dimensions are L=D=1 and H=0.4 for msdel
and 5, R=1 and H=0.4 for model 6. Note that thel&yer
elements are assumed to be non-designable for fires
sure in model 4.

The optimal designs of three models are shown ¢n Fi
11. For model 4, the optimal configuration givenFRig.
11(a) is similar to that found by Yang et al. (2pOBor
models 5 and 6, four columns are generated onixiee f
points and connected by straight members. The cosgra
shows that the solution without non-designable dorhas
smaller compliance value than that in Fig. 11(a).

(b) optimal structure of
model 5

CL=1.056

(a) optimal structure of
model 4

CL =1.487

A

(c) optimal structure of model 6
C; =1.167
Fig. 11 3D optimal configurations

5.2 Unidirectional pressure load on the moving
surface

Model 2 is investigated firstly. Dimensions are Laid

H=0.5. The structure is meshed withx20 elements. The

optimal design is shown in Fig. 12(b) while the ioyt
design from the literature is shown in Fig. 12(a) ¢om-
parison. The former is found to be more interestiitl a
smaller value of structural compliance.

In Fig. 12(c), the optimal solution associated witro-
solid phase materials is illustrated. Besides,cts$fof the
volume fraction upon the normalized compliance -
ted in Fig.13. Obviously, the compliance of optirs#aiuc-
ture decreases very slowly when the volume fracton
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larger than 0.6. Some representative optimal carditipns optimal configurations are almost kept to be unglean

are presented in Fig.13 as well. whenH > 0.5, i.e., the optimization result cannot be im-
proved any more.

Furthermore, the proposed design procedure is exppli
for model 3 that is fixed at the upper corners. Tesign
domain has a dimension of L=1 and H=0.5 and is exsh
into 40<20 elements. Under the moving pressure load, the

(a) two material phases (b) two material phases optimization results of one and two solid matepahses
(Du and Olhoff [9]) vf,=0.5, C" =1.051 are shown in Fig.15, respectively. Both configuas are
vi,=0.5, C,L =1.071 F found to be similar and no elements of intermediteesity
values exist.
(c) three material phases (a) one solid material phase (b) two solid material phases
vh= v6,=0.2, E?:EM=3:1 v=0.3, CL =1.253 vh= vf= 0.15,

Fig. 15 2D optimal configurations of model 3 ungess-
sure load of case 2

Fig. 12 2D optimal configurations of model 2 ungess-
sure load of case 2

\\ //\ E
PN

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
volume fraction

Fig. 13 Normalized compliance versus volume fracfior
optimization results of model 2 under pressure lolachse
2

T N

i

o [ ES n =N

normalized compliance

=
T

0.9

(b) optimal structure of model 5

Cl =1.373

compliance
j=1 <
(=2 -~

N

(c) optimal structure of model 6

0.4

01 02 03 04 05 06 07 08 09 1 (d) C,; =1.344
H/L . . . .
Fig.14 Influence of H/L upon the optimization retsul Fig. 16 3D optimal configurations under pressullof
case 2

Now, it is interesting to investigate the influenoé . .
structural dimension upon the optimization resuisre, 3D cases: The optimal designs of 3D problems under
dimension H is assumed to be changeable while Is=1 i !0ad case 2 are shown in Fig. 16. The same dimessie
retained and the volume of solid material is kepbe 0.2  those in Fig. 11 are adopted avfg=0.1. For model 5, the
irespective of H. Optimal solutions for differevalues of ~ OPtimal configuration given in Fig. 16(b) is verynslar to
H are presented in Fig. 14. One can see that thetstal that obtained by Yang et al. [24] and shown in Hi§(a).
compliance decreases with the increase of H. Aad ttre Both optimization results of model 5 and 6 resenthle
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gothic vaulting. Obviously, four arches join thejamnt
supports. Moreover, there are two arch vaults dwerdi-
agonal supports and a cross appears at the tdye aftrtuc-
ture.

Conclusions

This work is focused on topology optimization afust
tures consisting of multiphase materials under iuexid
tional pressure load. Unlike traditional design kpemns,
the unidirectional pressure load considered hexesgn-
dependent. This means that the pressure load varies
magnitude and location with respect to the matefistii-
bution. Exponential models of closed-form are psgubto
describe the relationship between the pressuredaddhe
material density variables. Correspondingly, séisit
analysis is developed to take into account the gdesi
dependent effect of the load variation during theesigin
iteration. As the structural compliance is no langeno-
tonic function of design variables, the MDQA opthaiion
algorithm is adopted to solve the considered nuwaéri
examples. The investigation of obtained resultsvshthat
the developed force model and the design procedrge
reliable to produce satisfactory design solutions.
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