Open Access
Int. J. Simul. Multidisci. Des. Optim.
Volume 1, Number 1, October 2007
Page(s) 49 - 54
Published online 12 December 2007
  1. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley (1989) [Google Scholar]
  2. E. Sandergen, E.D. Jensen, J. Welton, Topological design of structural components using genetic optimization methods, in Sensitivity Analysis and optimization with Numerical Methods. AMD, 1990, 115, Proceeding of Winter Annual Meeting of the American Society of Mechanical Engineers, Dallas, TX, 31–43. [Google Scholar]
  3. C. Chapman, K. Saitou, M. Jakiela, Genetic Algorithms as an approach to configuration and topology design. ASME Journal of Mechanical Design 116, 1005–1012 (1994) [CrossRef] [Google Scholar]
  4. C. Chapman, M. Jakiela, Genetic algorithm-based structural topology design with compliance and topology simplification considerations. ASME Journal of Mechanical Design 118, 89–98 (1996) [CrossRef] [Google Scholar]
  5. M. Jakiela, C. Chapman, J. Duda, A. Adewuya, K. Saitou, Continuum Structural topology design with Genetic Algorithms. Comput. Method. Appl. M. 186, 339–356 (2000) [CrossRef] [Google Scholar]
  6. M. Schoenauer, Shape representation for evolutionary optimization and identification in structural mechanisms. In Genetic Algorithms in Engineering and Computer Science, G. Winter, J. Periaux, M. Galain and P. Cuesta, Eds. Chichester John Wiley (1995) p. 443–464. [Google Scholar]
  7. C. Kane, M. Schoenauer, Topological Optimum Design using Genetic Algorithms. Control and Cybernetics 25, 1059–1088 (1996) [Google Scholar]
  8. D.W. Fanjoy, W.A. Crossley, Topology design of planar Cross-sections with a genetic algorithm: Part 1- Overcoming the obstacles. Engineering Optimization 34, 33–48 (2002) [Google Scholar]
  9. H. Hamda, F. Jouve, E. Lutton, M. Schoenauer, M. Sebag, Représentation non-structurée en optimisation topologique de forme par Algorithmes Evolutionnaires. ESAIM Proceedings actes du 32e Congrès d'analyse Numérique CNUM, 1–3 (Septembre 2000) [Google Scholar]
  10. D.W. Fanjoy, W.A. Crossley, Topology design of planar Cross-sections with a Genetic Algorithm: Part 2- Bending, Torsion and combined loading applications. Engineering Optimization 34, 49–64 (2002) [CrossRef] [Google Scholar]
  11. S.Y. Wang, K. Tai, Structural topology optimization using genetic algorithms with bit-array representation. Computer Methods in Applied Mechanics and Engineering 194, 3749–3770 (2005) [CrossRef] [Google Scholar]
  12. B. Tatting, Z. Gürdal, Cellular automata for design of tow-dimensional continuum structures. In Proceeding of the 8th AIAA/USAF/NASA/ISSMO Symposium of Multidisciplinary Analysis and Optimization, pages 2000–4832, Long Beach, CA, 2000, AIAA Paper. [Google Scholar]
  13. A. Tovar, N. Patel, A.K. Kaushik, G.A. Letona, J.E. Renaud, Hybrid cellular automata: a biologically-inspired structural optimization technique. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 30 August – 1 September 2004, Albany, New York. [Google Scholar]
  14. M.P. Bendsøe, O. Sigmund, Topology Optimization: Theory, Methods and Applications, Springer-Verlag, New York (2003) [Google Scholar]
  15. C.A.C. Coello, Theoretical and numerical constraint-handling techniques used with Evolutionary Algorithms: A survey of the State of the Art. Computer Methods in Applied Mechanics and Engineering 191, 1245–1287 (2002) [CrossRef] [Google Scholar]
  16. K. Deb, An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186, 311–338 (2000) [NASA ADS] [CrossRef] [Google Scholar]
  17. J.E. Baker, Reducing bias and inefficiency in the selection algorithms. in Proceeding of the Second International Conference on Genetic Algorithms. and their Applications, New Jersey, USA, p. 14–21 (1987) [Google Scholar]
  18. D.J. Higham, N.J. Higham, MATLAB guide. Society for Industrial and Applied Mathematics, 2nd edition (Philadelphia 2005) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.